DeltaNet:Conditional Medical Report Generation for COVID-19 Diagnosis
- URL: http://arxiv.org/abs/2211.13229v1
- Date: Sat, 12 Nov 2022 07:41:03 GMT
- Title: DeltaNet:Conditional Medical Report Generation for COVID-19 Diagnosis
- Authors: Xian Wu, Shuxin Yang, Zhaopeng Qiu, Shen Ge, Yangtian Yan, Xingwang
Wu, Yefeng Zheng, S. Kevin Zhou, Li Xiao
- Abstract summary: We propose DeltaNet to generate medical reports automatically.
DeltaNet employs three steps to generate a report.
We evaluate DeltaNet on a COVID-19 dataset, where DeltaNet outperforms state-of-the-art approaches.
- Score: 54.93879264615525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fast screening and diagnosis are critical in COVID-19 patient treatment. In
addition to the gold standard RT-PCR, radiological imaging like X-ray and CT
also works as an important means in patient screening and follow-up. However,
due to the excessive number of patients, writing reports becomes a heavy burden
for radiologists. To reduce the workload of radiologists, we propose DeltaNet
to generate medical reports automatically. Different from typical image
captioning approaches that generate reports with an encoder and a decoder,
DeltaNet applies a conditional generation process. In particular, given a
medical image, DeltaNet employs three steps to generate a report: 1) first
retrieving related medical reports, i.e., the historical reports from the same
or similar patients; 2) then comparing retrieved images and current image to
find the differences; 3) finally generating a new report to accommodate
identified differences based on the conditional report. We evaluate DeltaNet on
a COVID-19 dataset, where DeltaNet outperforms state-of-the-art approaches.
Besides COVID-19, the proposed DeltaNet can be applied to other diseases as
well. We validate its generalization capabilities on the public IU-Xray and
MIMIC-CXR datasets for chest-related diseases. Code is available at
\url{https://github.com/LX-doctorAI1/DeltaNet}.
Related papers
- CT2Rep: Automated Radiology Report Generation for 3D Medical Imaging [0.20754235913398283]
We introduce the first method to generate radiology reports for 3D medical imaging, specifically targeting chest CT.
Given the absence of comparable methods, we establish a baseline using an advanced 3D vision encoder in medical imaging to demonstrate our method's effectiveness.
We augment CT2Rep with a cross-attention-based multi-modal fusion module and hierarchical memory, enabling the incorporation of longitudinal multimodal data.
arXiv Detail & Related papers (2024-03-11T15:17:45Z) - Complex Organ Mask Guided Radiology Report Generation [13.96983438709763]
We propose the Complex Organ Mask Guided (termed as COMG) report generation model.
We leverage prior knowledge of the disease corresponding to each organ in the fusion process to enhance the disease identification phase.
Results on two public datasets show that COMG achieves a 11.4% and 9.7% improvement in terms of BLEU@4 scores over the SOTA model KiUT.
arXiv Detail & Related papers (2023-11-04T05:34:24Z) - Act Like a Radiologist: Radiology Report Generation across Anatomical Regions [50.13206214694885]
X-RGen is a radiologist-minded report generation framework across six anatomical regions.
In X-RGen, we seek to mimic the behaviour of human radiologists, breaking them down into four principal phases.
We enhance the recognition capacity of the image encoder by analysing images and reports across various regions.
arXiv Detail & Related papers (2023-05-26T07:12:35Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
COVID-19 diagnosis can now be done efficiently using PCR tests, but this use case exemplifies the need for a methodology to overcome data variability issues.
We propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans.
arXiv Detail & Related papers (2022-08-19T15:49:47Z) - AlignTransformer: Hierarchical Alignment of Visual Regions and Disease
Tags for Medical Report Generation [50.21065317817769]
We propose an AlignTransformer framework, which includes the Align Hierarchical Attention (AHA) and the Multi-Grained Transformer (MGT) modules.
Experiments on the public IU-Xray and MIMIC-CXR datasets show that the AlignTransformer can achieve results competitive with state-of-the-art methods on the two datasets.
arXiv Detail & Related papers (2022-03-18T13:43:53Z) - COVIDX: Computer-aided diagnosis of Covid-19 and its severity prediction
with raw digital chest X-ray images [0.6767885381740952]
Coronavirus disease (COVID-19) is a contagious infection caused by severe acute respiratory syndrome coronavirus-2 (SARS-COV-2)
A chest X-ray (CXR) image can be used as an alternative modality to detect and diagnose the COVID-19.
We present an automatic COVID-19 diagnostic and severity prediction (COVIDX) system that uses deep feature maps from CXR images.
arXiv Detail & Related papers (2020-12-25T17:03:06Z) - Multi-Task Driven Explainable Diagnosis of COVID-19 using Chest X-ray
Images [61.24431480245932]
COVID-19 Multi-Task Network is an automated end-to-end network for COVID-19 screening.
We manually annotate the lung regions of 9000 frontal chest radiographs taken from ChestXray-14, CheXpert and a consolidated COVID-19 dataset.
This database will be released to the research community.
arXiv Detail & Related papers (2020-08-03T12:52:23Z) - XRayGAN: Consistency-preserving Generation of X-ray Images from
Radiology Reports [19.360283053558604]
We develop methods to generate view-consistent, high-fidelity, and high-resolution X-ray images from radiology reports.
This work represents the first one generating consistent and high-resolution X-ray images from radiology reports.
arXiv Detail & Related papers (2020-06-17T05:32:14Z) - Auxiliary Signal-Guided Knowledge Encoder-Decoder for Medical Report
Generation [107.3538598876467]
We propose an Auxiliary Signal-Guided Knowledge-Decoder (ASGK) to mimic radiologists' working patterns.
ASGK integrates internal visual feature fusion and external medical linguistic information to guide medical knowledge transfer and learning.
arXiv Detail & Related papers (2020-06-06T01:00:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.