PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis
- URL: http://arxiv.org/abs/2208.09408v1
- Date: Fri, 19 Aug 2022 15:49:47 GMT
- Title: PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis
- Authors: Mohammadreza Amirian, Javier A. Montoya-Zegarra, Jonathan Gruss, Yves
D. Stebler, Ahmet Selman Bozkir, Marco Calandri, Friedhelm Schwenker and
Thilo Stadelmann
- Abstract summary: COVID-19 diagnosis can now be done efficiently using PCR tests, but this use case exemplifies the need for a methodology to overcome data variability issues.
We propose a novel generative approach that aims at erasing the differences induced by e.g. the imaging technology while simultaneously introducing minimal changes to the CT scans.
- Score: 0.22485007639406518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the spread of COVID-19 over the world, the need arose for fast and
precise automatic triage mechanisms to decelerate the spread of the disease by
reducing human efforts e.g. for image-based diagnosis. Although the literature
has shown promising efforts in this direction, reported results do not consider
the variability of CT scans acquired under varying circumstances, thus
rendering resulting models unfit for use on data acquired using e.g. different
scanner technologies. While COVID-19 diagnosis can now be done efficiently
using PCR tests, this use case exemplifies the need for a methodology to
overcome data variability issues in order to make medical image analysis models
more widely applicable. In this paper, we explicitly address the variability
issue using the example of COVID-19 diagnosis and propose a novel generative
approach that aims at erasing the differences induced by e.g. the imaging
technology while simultaneously introducing minimal changes to the CT scans
through leveraging the idea of deep auto-encoders. The proposed prepossessing
architecture (PrepNet) (i) is jointly trained on multiple CT scan datasets and
(ii) is capable of extracting improved discriminative features for improved
diagnosis. Experimental results on three public datasets (SARS-COVID-2, UCSD
COVID-CT, MosMed) show that our model improves cross-dataset generalization by
up to $11.84$ percentage points despite a minor drop in within dataset
performance.
Related papers
- Multi-Scale Feature Fusion using Parallel-Attention Block for COVID-19
Chest X-ray Diagnosis [2.15242029196761]
Under the global COVID-19 crisis, accurate diagnosis of COVID-19 from Chest X-ray (CXR) images is critical.
We propose a novel multi-feature fusion network using parallel attention blocks to fuse the original CXR images and local-phase feature-enhanced CXR images at multi-scales.
arXiv Detail & Related papers (2023-04-25T16:56:12Z) - Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - A Novel Automated Classification and Segmentation for COVID-19 using 3D
CT Scans [5.5957919486531935]
In COVID-19 computed tomography (CT) images of the lungs, ground glass turbidity is the most common finding that requires specialist diagnosis.
Some researchers propose the relevant DL models which can replace professional diagnostic specialists in clinics when lacking expertise.
Our model achieves 94.52% accuracy in the classification of lung lesions by 3 types: COVID, Pneumonia and Normal.
arXiv Detail & Related papers (2022-08-04T22:14:18Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Automated Model Design and Benchmarking of 3D Deep Learning Models for
COVID-19 Detection with Chest CT Scans [72.04652116817238]
We propose a differentiable neural architecture search (DNAS) framework to automatically search for the 3D DL models for 3D chest CT scans classification.
We also exploit the Class Activation Mapping (CAM) technique on our models to provide the interpretability of the results.
arXiv Detail & Related papers (2021-01-14T03:45:01Z) - Deep Metric Learning-based Image Retrieval System for Chest Radiograph
and its Clinical Applications in COVID-19 [12.584626589565522]
Chest radiograph (CXR) has been playing a crucial role in COVID-19 patient triaging, diagnosing and monitoring.
Considering the mixed and unspecific signals in CXR, an image retrieval model of CXR that provides both similar images and associated clinical information can be more clinically meaningful.
In this work we develop a novel CXR image retrieval model based on deep metric learning.
arXiv Detail & Related papers (2020-11-26T03:16:48Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Contrastive Cross-site Learning with Redesigned Net for COVID-19 CT
Classification [20.66003113364796]
The pandemic of coronavirus disease 2019 (COVID-19) has lead to a global public health crisis spreading hundreds of countries.
To assist the clinical diagnosis and reduce the tedious workload of image interpretation, developing automated tools for COVID-19 identification with CT image is highly desired.
This paper proposes a novel joint learning framework to perform accurate COVID-19 identification by effectively learning with heterogeneous datasets.
arXiv Detail & Related papers (2020-09-15T11:09:04Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Automated Chest CT Image Segmentation of COVID-19 Lung Infection based
on 3D U-Net [0.0]
The coronavirus disease 2019 (COVID-19) affects billions of lives around the world and has a significant impact on public healthcare.
We propose an innovative automated segmentation pipeline for COVID-19 infected regions.
Our method focuses on on-the-fly generation of unique and random image patches for training by performing several preprocessing methods.
arXiv Detail & Related papers (2020-06-24T17:29:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.