Tapping the Potential of Coherence and Syntactic Features in Neural
Models for Automatic Essay Scoring
- URL: http://arxiv.org/abs/2211.13373v1
- Date: Thu, 24 Nov 2022 02:00:03 GMT
- Title: Tapping the Potential of Coherence and Syntactic Features in Neural
Models for Automatic Essay Scoring
- Authors: Xinying Qiu, Shuxuan Liao, Jiajun Xie, Jian-Yun Nie
- Abstract summary: We propose a novel approach to extract and represent essay coherence features with prompt-learning NSP.
We apply syntactic feature dense embedding to augment BERT-based model and achieve the best performance for hybrid methodology for AES.
- Score: 16.24421485426685
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the prompt-specific holistic score prediction task for Automatic Essay
Scoring, the general approaches include pre-trained neural model, coherence
model, and hybrid model that incorporate syntactic features with neural model.
In this paper, we propose a novel approach to extract and represent essay
coherence features with prompt-learning NSP that shows to match the
state-of-the-art AES coherence model, and achieves the best performance for
long essays. We apply syntactic feature dense embedding to augment BERT-based
model and achieve the best performance for hybrid methodology for AES. In
addition, we explore various ideas to combine coherence, syntactic information
and semantic embeddings, which no previous study has done before. Our combined
model also performs better than the SOTA available for combined model, even
though it does not outperform our syntactic enhanced neural model. We further
offer analyses that can be useful for future study.
Related papers
- Exploring Model Kinship for Merging Large Language Models [52.01652098827454]
We introduce model kinship, the degree of similarity or relatedness between Large Language Models.
We find that there is a certain relationship between model kinship and the performance gains after model merging.
We propose a new model merging strategy: Top-k Greedy Merging with Model Kinship, which can yield better performance on benchmark datasets.
arXiv Detail & Related papers (2024-10-16T14:29:29Z) - Hybrid Training Approaches for LLMs: Leveraging Real and Synthetic Data to Enhance Model Performance in Domain-Specific Applications [0.0]
This research explores a hybrid approach to fine-tuning large language models (LLMs)
By leveraging a dataset combining transcribed real interactions with high-quality synthetic sessions, we aimed to overcome the limitations of domain-specific real data.
The study evaluated three models: a base foundational model, a model fine-tuned with real data, and a hybrid fine-tuned model.
arXiv Detail & Related papers (2024-10-11T18:16:03Z) - Information-Theoretic Distillation for Reference-less Summarization [67.51150817011617]
We present a novel framework to distill a powerful summarizer based on the information-theoretic objective for summarization.
We start off from Pythia-2.8B as the teacher model, which is not yet capable of summarization.
We arrive at a compact but powerful summarizer with only 568M parameters that performs competitively against ChatGPT.
arXiv Detail & Related papers (2024-03-20T17:42:08Z) - Improving the TENOR of Labeling: Re-evaluating Topic Models for Content
Analysis [5.757610495733924]
We conduct the first evaluation of neural, supervised and classical topic models in an interactive task based setting.
We show that current automated metrics do not provide a complete picture of topic modeling capabilities.
arXiv Detail & Related papers (2024-01-29T17:54:04Z) - Syntax-Informed Interactive Model for Comprehensive Aspect-Based
Sentiment Analysis [0.0]
We introduce an innovative model: Syntactic Dependency Enhanced Multi-Task Interaction Architecture (SDEMTIA) for comprehensive ABSA.
Our approach innovatively exploits syntactic knowledge (dependency relations and types) using a specialized Syntactic Dependency Embedded Interactive Network (SDEIN)
We also incorporate a novel and efficient message-passing mechanism within a multi-task learning framework to bolster learning efficacy.
arXiv Detail & Related papers (2023-11-28T16:03:22Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
This paper explores the nuances of synthetic data generation in NLP.
We highlight its advantages, including data augmentation potential and the introduction of structured variety.
We demonstrate the impact of template-based synthetic data on the performance of modern transformer models.
arXiv Detail & Related papers (2023-10-11T19:16:09Z) - On the Robustness of Aspect-based Sentiment Analysis: Rethinking Model,
Data, and Training [109.9218185711916]
Aspect-based sentiment analysis (ABSA) aims at automatically inferring the specific sentiment polarities toward certain aspects of products or services behind social media texts or reviews.
We propose to enhance the ABSA robustness by systematically rethinking the bottlenecks from all possible angles, including model, data, and training.
arXiv Detail & Related papers (2023-04-19T11:07:43Z) - Hybrid Feature- and Similarity-Based Models for Prediction and
Interpretation using Large-Scale Observational Data [0.0]
We propose a hybrid feature- and similarity-based model for supervised learning.
The proposed hybrid model is fit by convex optimization with a sparsity-inducing penalty on the kernel portion.
We compared our models to solely feature- and similarity-based approaches using synthetic data and using EHR data to predict risk of loneliness or social isolation.
arXiv Detail & Related papers (2022-04-12T20:37:03Z) - Introducing Syntactic Structures into Target Opinion Word Extraction
with Deep Learning [89.64620296557177]
We propose to incorporate the syntactic structures of the sentences into the deep learning models for targeted opinion word extraction.
We also introduce a novel regularization technique to improve the performance of the deep learning models.
The proposed model is extensively analyzed and achieves the state-of-the-art performance on four benchmark datasets.
arXiv Detail & Related papers (2020-10-26T07:13:17Z) - Automated and Formal Synthesis of Neural Barrier Certificates for
Dynamical Models [70.70479436076238]
We introduce an automated, formal, counterexample-based approach to synthesise Barrier Certificates (BC)
The approach is underpinned by an inductive framework, which manipulates a candidate BC structured as a neural network, and a sound verifier, which either certifies the candidate's validity or generates counter-examples.
The outcomes show that we can synthesise sound BCs up to two orders of magnitude faster, with in particular a stark speedup on the verification engine.
arXiv Detail & Related papers (2020-07-07T07:39:42Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
We take the NER task as a testbed to analyze the generalization behavior of existing models from different perspectives.
Experiments with in-depth analyses diagnose the bottleneck of existing neural NER models.
As a by-product of this paper, we have open-sourced a project that involves a comprehensive summary of recent NER papers.
arXiv Detail & Related papers (2020-01-12T04:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.