Purity decay rate in random circuits with different configurations of
gates
- URL: http://arxiv.org/abs/2211.13565v1
- Date: Thu, 24 Nov 2022 12:32:07 GMT
- Title: Purity decay rate in random circuits with different configurations of
gates
- Authors: Ja\v{s} Bensa and Marko \v{Z}nidari\v{c}
- Abstract summary: We study purity decay -- a measure for bipartite entanglement -- in a chain of $n$ under the action of various geometries.
In most circuits, purity decays to its value in two stages: the initial thermodynamically relevant decay up to extensive times is $sim lambda_mathrmeffeff$, with $lambda_mathrmeff$ not necessarily being in the spectrum of the transfer matrix.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We study purity decay -- a measure for bipartite entanglement -- in a chain
of $n$ qubits under the action of various geometries of nearest-neighbor random
2-site unitary gates. We use a Markov chain description of average purity
evolution, using further reduction to obtain a transfer matrix of only
polynomial dimension in $n$. In most circuits, an exception being a brickwall
configuration, purity decays to its asymptotic value in two stages: the initial
thermodynamically relevant decay persisting up to extensive times is $\sim
\lambda_{\mathrm{eff}}^t$ , with $\lambda_{\mathrm{eff}}$ not necessarily being
in the spectrum of the transfer matrix, while the ultimate asymptotic decay is
given by the second largest eigenvalue $\lambda_2$ of the transfer matrix. The
effective rate $\lambda_{\mathrm{eff}}$ depends on the location of bipartition
boundaries as well on the geometry of applied gates.
Related papers
- Nonasymptotic Analysis of Stochastic Gradient Descent with the Richardson-Romberg Extrapolation [22.652143194356864]
We address the problem of solving strongly convex and smooth problems using a descent gradient (SGD) algorithm with a constant step size.
We provide an expansion of the mean-squared error of the resulting estimator with respect to the number iterations of $n$.
We establish that this chain is geometrically ergodic with respect to a defined weighted Wasserstein semimetric.
arXiv Detail & Related papers (2024-10-07T15:02:48Z) - The matrix permanent and determinant from a spin system [0.0]
Gauss-Jordan for the determinant of $M$ is then equivalent to the successive removal of the generalized zero eigenspace of the fermionic $breveM$.
Our analysis may point the way to new strategies for classical and quantum evaluation of the permanent.
arXiv Detail & Related papers (2023-07-10T16:34:55Z) - Re-Analyze Gauss: Bounds for Private Matrix Approximation via Dyson
Brownian Motion [28.431572772564518]
Given a symmetric matrix $M$ and a vector $lambda$, we present new bounds on the Frobenius-distance utility of the Gaussian mechanism for approximating $M$ by a matrix.
Our bounds depend on both $lambda$ and the gaps in the eigenvalues of $M$, and hold whenever the top $k+1$ eigenvalues of $M$ have sufficiently large gaps.
arXiv Detail & Related papers (2022-11-11T18:54:01Z) - Near-optimal fitting of ellipsoids to random points [68.12685213894112]
A basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis.
We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some $n = Omega(, d2/mathrmpolylog(d),)$.
Our proof demonstrates feasibility of the least squares construction of Saunderson et al. using a convenient decomposition of a certain non-standard random matrix.
arXiv Detail & Related papers (2022-08-19T18:00:34Z) - Symmetry-resolved entanglement entropy in critical free-fermion chains [0.0]
symmetry-resolved R'enyi entanglement entropy is known to have rich theoretical connections to conformal field theory.
We consider a class of critical quantum chains with a microscopic U(1) symmetry.
For the density matrix, $rho_A$, of subsystems of $L$ neighbouring sites we calculate the leading terms in the large $L$ expansion of the symmetry-resolved R'enyi entanglement entropies.
arXiv Detail & Related papers (2022-02-23T19:00:03Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Random quantum circuits anti-concentrate in log depth [118.18170052022323]
We study the number of gates needed for the distribution over measurement outcomes for typical circuit instances to be anti-concentrated.
Our definition of anti-concentration is that the expected collision probability is only a constant factor larger than if the distribution were uniform.
In both the case where the gates are nearest-neighbor on a 1D ring and the case where gates are long-range, we show $O(n log(n)) gates are also sufficient.
arXiv Detail & Related papers (2020-11-24T18:44:57Z) - Asymptotics of Entropy-Regularized Optimal Transport via Chaos
Decomposition [1.7188280334580195]
This paper is on the properties of a discrete Schr"odinger bridge as $N$ tends to infinity.
We derive the first two error terms of orders $N-1/2$ and $N-1$, respectively.
The kernels corresponding to the first and second order chaoses are given by Markov operators which have natural interpretations in the Sinkhorn algorithm.
arXiv Detail & Related papers (2020-11-17T21:55:46Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonsmooth functions.
In particular, we study Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions.
arXiv Detail & Related papers (2020-02-10T23:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.