論文の概要: Knowledge-Aware Federated Active Learning with Non-IID Data
- arxiv url: http://arxiv.org/abs/2211.13579v3
- Date: Sat, 30 Sep 2023 04:41:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-03 20:49:48.960261
- Title: Knowledge-Aware Federated Active Learning with Non-IID Data
- Title(参考訳): 非iidデータを用いたナレッジアウェアフェデレーションアクティブラーニング
- Authors: Yu-Tong Cao, Ye Shi, Baosheng Yu, Jingya Wang, Dacheng Tao
- Abstract要約: 本稿では,アノテーション予算に制限のあるグローバルモデルを効率的に学習するための,連合型アクティブラーニングパラダイムを提案する。
フェデレートされたアクティブラーニングが直面する主な課題は、サーバ上のグローバルモデルのアクティブサンプリング目標と、ローカルクライアントのアクティブサンプリング目標とのミスマッチである。
本稿では,KSAS (Knowledge-Aware Federated Active Learning) とKCFU (Knowledge-Compensatory Federated Update) を組み合わせた,知識対応型アクティブ・ラーニング(KAFAL)を提案する。
- 参考スコア(独自算出の注目度): 75.98707107158175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning enables multiple decentralized clients to learn
collaboratively without sharing the local training data. However, the expensive
annotation cost to acquire data labels on local clients remains an obstacle in
utilizing local data. In this paper, we propose a federated active learning
paradigm to efficiently learn a global model with limited annotation budget
while protecting data privacy in a decentralized learning way. The main
challenge faced by federated active learning is the mismatch between the active
sampling goal of the global model on the server and that of the asynchronous
local clients. This becomes even more significant when data is distributed
non-IID across local clients. To address the aforementioned challenge, we
propose Knowledge-Aware Federated Active Learning (KAFAL), which consists of
Knowledge-Specialized Active Sampling (KSAS) and Knowledge-Compensatory
Federated Update (KCFU). KSAS is a novel active sampling method tailored for
the federated active learning problem. It deals with the mismatch challenge by
sampling actively based on the discrepancies between local and global models.
KSAS intensifies specialized knowledge in local clients, ensuring the sampled
data to be informative for both the local clients and the global model. KCFU,
in the meantime, deals with the client heterogeneity caused by limited data and
non-IID data distributions. It compensates for each client's ability in weak
classes by the assistance of the global model. Extensive experiments and
analyses are conducted to show the superiority of KSAS over the
state-of-the-art active learning methods and the efficiency of KCFU under the
federated active learning framework.
- Abstract(参考訳): フェデレーション学習は、複数の分散したクライアントが、ローカルトレーニングデータを共有せずに協調的に学習できるようにする。
しかし、ローカルクライアントでデータラベルを取得するための高価なアノテーションコストは、ローカルデータを利用する際の障害である。
本稿では,分散学習方式でデータプライバシを保護しつつ,限定的なアノテーション予算でグローバルモデルを効率的に学習するための連合型アクティブラーニングパラダイムを提案する。
フェデレートされたアクティブラーニングが直面する主な課題は、サーバ上のグローバルモデルのアクティブサンプリング目標と非同期のローカルクライアントとのミスマッチである。
これは、データがローカルクライアント間で非IIDに分散されたときにさらに重要になる。
上記の課題に対処するため,KSAS (Knowledge-Aware Federated Active Learning) とKCFU (Knowledge-Compensatory Federated Update) からなる知識認識型アクティブラーニング (KAFAL) を提案する。
ksasは連合型アクティブラーニング問題に適した新しいアクティブサンプリング手法である。
ローカルモデルとグローバルモデルの違いに基づいて積極的にサンプリングすることで、ミスマッチの課題に対処する。
KSASは、ローカルクライアントの専門知識を強化し、サンプルデータをローカルクライアントとグローバルモデルの両方に知らせることを保証する。
一方KCFUは、限られたデータと非IIDデータ分散に起因するクライアントの不均一性を扱う。
グローバルモデルの助けを借りて、弱いクラスにおける各クライアントの能力を補う。
連合型アクティブラーニングフレームワークにおけるKSASの最先端のアクティブラーニング手法に対する優位性と,KCFUの効率性を示すため,大規模な実験と分析を行った。
関連論文リスト
- ConDa: Fast Federated Unlearning with Contribution Dampening [46.074452659791575]
ConDaは、各クライアントのグローバルモデルに影響を与えるパラメータを追跡することによって、効率的なアンラーニングを実行するフレームワークである。
複数のデータセットで実験を行い、ConDaがクライアントのデータを忘れるのが効果的であることを実証する。
論文 参考訳(メタデータ) (2024-10-05T12:45:35Z) - SFedCA: Credit Assignment-Based Active Client Selection Strategy for Spiking Federated Learning [15.256986486372407]
フェデレーション学習のスパイクにより、リソースに制約のあるデバイスは、ローカルデータを交換することなく、低消費電力で協調的にトレーニングできる。
既存のスパイキングフェデレーション学習手法では、クライアントのアグリゲーションに対してランダムな選択アプローチを採用しており、不偏なクライアントの参加を前提としている。
本研究では,グローバルなサンプル分布バランスに寄与するクライアントを鑑定するために,クレジット割当に基づくアクティブクライアント選択戦略であるSFedCAを提案する。
論文 参考訳(メタデータ) (2024-06-18T01:56:22Z) - FedAL: Black-Box Federated Knowledge Distillation Enabled by Adversarial Learning [10.118046070458488]
本稿では,クライアント間のデータ不均一性に対処するために,Adversarial Learning (FedAL) によって実現されたフェデレーション知識蒸留を提案する。
まず、データ不均一性に起因するクライアント間のローカルモデル出力のばらつきを軽減するために、サーバはクライアントのローカルモデルトレーニングをガイドする識別器として機能する。
ローカルトレーニングとグローバルナレッジ移行の両面において,従来よりも少ない正規化を設計し,クライアントの知識を他者へ/あるいは他者へ転送/学習する能力を保証する。
論文 参考訳(メタデータ) (2023-11-28T08:01:43Z) - FLIS: Clustered Federated Learning via Inference Similarity for Non-IID
Data Distribution [7.924081556869144]
本稿では,クライアント集団をクラスタにグループ化し,共同でトレーニング可能なデータ配信を行う新しいアルゴリズムFLISを提案する。
CIFAR-100/10, SVHN, FMNISTデータセット上の最先端ベンチマークに対するFLISの利点を示す実験結果を示す。
論文 参考訳(メタデータ) (2022-08-20T22:10:48Z) - FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling
and Correction [48.85303253333453]
フェデレートラーニング(FL)は、複数のクライアントがプライベートデータを共有せずに、高性能なグローバルモデルを集合的にトレーニングすることを可能にする。
局所的ドリフトデカップリングと補正(FedDC)を用いた新しいフェデレーション学習アルゴリズムを提案する。
私たちのFedDCでは、ローカルモデルパラメータとグローバルモデルパラメータのギャップを追跡するために、各クライアントが補助的なローカルドリフト変数を使用するような、ローカルトレーニングフェーズにおける軽量な修正のみを導入しています。
実験結果と解析結果から,FedDCは様々な画像分類タスクにおいて,収差の迅速化と性能の向上を図っている。
論文 参考訳(メタデータ) (2022-03-22T14:06:26Z) - Distributed Unsupervised Visual Representation Learning with Fused
Features [13.935997509072669]
フェデレートラーニング(FL)により、分散クライアントは、各クライアントにトレーニングデータをローカルに保持しながら、予測のための共有モデルを学ぶことができる。
本稿では,特徴融合と近傍マッチングという2つのアプローチからなる相互比較学習フレームワークを提案する。
IIDデータでは、他の手法よりも11%優れており、集中学習のパフォーマンスに匹敵する。
論文 参考訳(メタデータ) (2021-11-21T08:36:31Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
フェデレーション学習は重要な分散学習パラダイムとして登場し、サーバはクライアントデータにアクセスせずに、多くのクライアントがトレーニングしたモデルからグローバルモデルを集約する。
本稿では, 統計的不均一性を緩和し, フェデレートネットワークにおけるクライアント間での精度向上を図るために, ゼロショットデータ拡張を用いた新しいフェデレーション学習システムを提案する。
Fed-ZDAC (クライアントでのゼロショットデータ拡張によるフェデレーション学習) と Fed-ZDAS (サーバでのゼロショットデータ拡張によるフェデレーション学習) の2種類について検討する。
論文 参考訳(メタデータ) (2021-04-27T18:23:54Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
本稿では,クライアント間の共有データ表現と,クライアント毎のユニークなローカルヘッダを学習するための,新しいフェデレーション学習フレームワークとアルゴリズムを提案する。
提案アルゴリズムは, クライアント間の分散計算能力を利用して, 表現の更新毎に低次元の局所パラメータに対して, 多数の局所更新を行う。
この結果は、データ分布間の共有低次元表現を学習することを目的とした、幅広い種類の問題に対するフェデレーション学習以上の関心を持っている。
論文 参考訳(メタデータ) (2021-02-14T05:36:25Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z) - Decentralised Learning from Independent Multi-Domain Labels for Person
Re-Identification [69.29602103582782]
ディープラーニングは多くのコンピュータビジョンタスクで成功している。
しかし、プライバシー問題に対する意識の高まりは、特に人物の再識別(Re-ID)において、ディープラーニングに新たな課題をもたらす。
我々は,複数のプライバシ保護されたローカルモデル(ローカルクライアント)を同時に学習することにより,汎用的なグローバルモデル(中央サーバ)を構築するための,フェデレート・パーソナライゼーション(FedReID)と呼ばれる新しいパラダイムを提案する。
このクライアントサーバ共同学習プロセスは、プライバシコントロールの下で反復的に実行されるため、分散データを共有したり、収集したりすることなく、分散学習を実現することができる。
論文 参考訳(メタデータ) (2020-06-07T13:32:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。