Learning to Suggest Breaks: Sustainable Optimization of Long-Term User
Engagement
- URL: http://arxiv.org/abs/2211.13585v2
- Date: Wed, 7 Jun 2023 16:06:18 GMT
- Title: Learning to Suggest Breaks: Sustainable Optimization of Long-Term User
Engagement
- Authors: Eden Saig, Nir Rosenfeld
- Abstract summary: We study the role of breaks in recommendation, and propose a framework for learning optimal breaking policies.
Based on the notion that recommendation dynamics are susceptible to both positive and negative feedback, we cast recommendation as a Lotka-Volterra dynamical system.
- Score: 12.843340232167266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimizing user engagement is a key goal for modern recommendation systems,
but blindly pushing users towards increased consumption risks burn-out, churn,
or even addictive habits. To promote digital well-being, most platforms now
offer a service that periodically prompts users to take breaks. These, however,
must be set up manually, and so may be suboptimal for both users and the
system. In this paper, we study the role of breaks in recommendation, and
propose a framework for learning optimal breaking policies that promote and
sustain long-term engagement. Based on the notion that recommendation dynamics
are susceptible to both positive and negative feedback, we cast recommendation
as a Lotka-Volterra dynamical system, where breaking reduces to a problem of
optimal control. We then give an efficient learning algorithm, provide
theoretical guarantees, and empirically demonstrate the utility of our approach
on semi-synthetic data.
Related papers
- Unveiling User Satisfaction and Creator Productivity Trade-Offs in Recommendation Platforms [68.51708490104687]
We show that a purely relevance-driven policy with low exploration strength boosts short-term user satisfaction but undermines the long-term richness of the content pool.
Our findings reveal a fundamental trade-off between immediate user satisfaction and overall content production on platforms.
arXiv Detail & Related papers (2024-10-31T07:19:22Z) - Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - Harm Mitigation in Recommender Systems under User Preference Dynamics [16.213153879446796]
We consider a recommender system that takes into account the interplay between recommendations, user interests, and harmful content.
We seek recommendation policies that establish a tradeoff between maximizing click-through rate (CTR) and mitigating harm.
arXiv Detail & Related papers (2024-06-14T09:52:47Z) - Modeling User Retention through Generative Flow Networks [34.74982897470852]
Flow-based modeling technique can back-propagate the retention reward towards each recommended item in the user session.
We show that the flow combined with traditional learning-to-rank objectives eventually optimized a non-discounted cumulative reward for both immediate user feedback and user retention.
arXiv Detail & Related papers (2024-06-10T06:22:18Z) - The Fault in Our Recommendations: On the Perils of Optimizing the Measurable [2.6217304977339473]
We show that optimizing for engagement can lead to significant utility losses.
We propose a utility-aware policy that initially recommends a mix of popular and niche content.
arXiv Detail & Related papers (2024-05-07T02:12:17Z) - Ensuring User-side Fairness in Dynamic Recommender Systems [37.20838165555877]
This paper presents the first principled study on ensuring user-side fairness in dynamic recommender systems.
We propose FAir Dynamic rEcommender (FADE), an end-to-end fine-tuning framework to dynamically ensure user-side fairness over time.
We show that FADE effectively and efficiently reduces performance disparities with little sacrifice in the overall recommendation performance.
arXiv Detail & Related papers (2023-08-29T22:03:17Z) - Improving Long-Term Metrics in Recommendation Systems using
Short-Horizon Offline RL [56.20835219296896]
We study session-based recommendation scenarios where we want to recommend items to users during sequential interactions to improve their long-term utility.
We develop a new batch RL algorithm called Short Horizon Policy Improvement (SHPI) that approximates policy-induced distribution shifts across sessions.
arXiv Detail & Related papers (2021-06-01T15:58:05Z) - Offline Meta-level Model-based Reinforcement Learning Approach for
Cold-Start Recommendation [27.17948754183511]
Reinforcement learning has shown great promise in optimizing long-term user interest in recommender systems.
Existing RL-based recommendation methods need a large number of interactions for each user to learn a robust recommendation policy.
We propose a meta-level model-based reinforcement learning approach for fast user adaptation.
arXiv Detail & Related papers (2020-12-04T08:58:35Z) - Generative Inverse Deep Reinforcement Learning for Online Recommendation [62.09946317831129]
We propose a novel inverse reinforcement learning approach, namely InvRec, for online recommendation.
InvRec extracts the reward function from user's behaviors automatically, for online recommendation.
arXiv Detail & Related papers (2020-11-04T12:12:25Z) - Empowering Active Learning to Jointly Optimize System and User Demands [70.66168547821019]
We propose a new active learning approach that jointly optimize the active learning system (training efficiently) and the user (receiving useful instances)
We study our approach in an educational application, which particularly benefits from this technique as the system needs to rapidly learn to predict the appropriateness of an exercise to a particular user.
We evaluate multiple learning strategies and user types with data from real users and find that our joint approach better satisfies both objectives when alternative methods lead to many unsuitable exercises for end users.
arXiv Detail & Related papers (2020-05-09T16:02:52Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.