Learning to Suggest Breaks: Sustainable Optimization of Long-Term User
Engagement
- URL: http://arxiv.org/abs/2211.13585v2
- Date: Wed, 7 Jun 2023 16:06:18 GMT
- Title: Learning to Suggest Breaks: Sustainable Optimization of Long-Term User
Engagement
- Authors: Eden Saig, Nir Rosenfeld
- Abstract summary: We study the role of breaks in recommendation, and propose a framework for learning optimal breaking policies.
Based on the notion that recommendation dynamics are susceptible to both positive and negative feedback, we cast recommendation as a Lotka-Volterra dynamical system.
- Score: 12.843340232167266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimizing user engagement is a key goal for modern recommendation systems,
but blindly pushing users towards increased consumption risks burn-out, churn,
or even addictive habits. To promote digital well-being, most platforms now
offer a service that periodically prompts users to take breaks. These, however,
must be set up manually, and so may be suboptimal for both users and the
system. In this paper, we study the role of breaks in recommendation, and
propose a framework for learning optimal breaking policies that promote and
sustain long-term engagement. Based on the notion that recommendation dynamics
are susceptible to both positive and negative feedback, we cast recommendation
as a Lotka-Volterra dynamical system, where breaking reduces to a problem of
optimal control. We then give an efficient learning algorithm, provide
theoretical guarantees, and empirically demonstrate the utility of our approach
on semi-synthetic data.
Related papers
- The Nah Bandit: Modeling User Non-compliance in Recommendation Systems [2.421459418045937]
Expert with Clustering (EWC) is a hierarchical approach that incorporates feedback from both recommended and non-recommended options to accelerate user preference learning.
EWC outperforms both supervised learning and traditional contextual bandit approaches.
This work lays the foundation for future research in Nah Bandit, providing a robust framework for more effective recommendation systems.
arXiv Detail & Related papers (2024-08-15T03:01:02Z) - Harm Mitigation in Recommender Systems under User Preference Dynamics [16.213153879446796]
We consider a recommender system that takes into account the interplay between recommendations, user interests, and harmful content.
We seek recommendation policies that establish a tradeoff between maximizing click-through rate (CTR) and mitigating harm.
arXiv Detail & Related papers (2024-06-14T09:52:47Z) - Ensuring User-side Fairness in Dynamic Recommender Systems [37.20838165555877]
This paper presents the first principled study on ensuring user-side fairness in dynamic recommender systems.
We propose FAir Dynamic rEcommender (FADE), an end-to-end fine-tuning framework to dynamically ensure user-side fairness over time.
We show that FADE effectively and efficiently reduces performance disparities with little sacrifice in the overall recommendation performance.
arXiv Detail & Related papers (2023-08-29T22:03:17Z) - Recommendation Fairness: From Static to Dynamic [12.080824433982993]
We discuss how fairness could be baked into reinforcement learning techniques for recommendation.
We argue that in order to make further progress in recommendation fairness, we may want to consider multi-agent (game-theoretic) optimization, multi-objective (Pareto) optimization.
arXiv Detail & Related papers (2021-09-05T21:38:05Z) - FEBR: Expert-Based Recommendation Framework for beneficial and
personalized content [77.86290991564829]
We propose FEBR (Expert-Based Recommendation Framework), an apprenticeship learning framework to assess the quality of the recommended content.
The framework exploits the demonstrated trajectories of an expert (assumed to be reliable) in a recommendation evaluation environment, to recover an unknown utility function.
We evaluate the performance of our solution through a user interest simulation environment (using RecSim)
arXiv Detail & Related papers (2021-07-17T18:21:31Z) - Improving Long-Term Metrics in Recommendation Systems using
Short-Horizon Offline RL [56.20835219296896]
We study session-based recommendation scenarios where we want to recommend items to users during sequential interactions to improve their long-term utility.
We develop a new batch RL algorithm called Short Horizon Policy Improvement (SHPI) that approximates policy-induced distribution shifts across sessions.
arXiv Detail & Related papers (2021-06-01T15:58:05Z) - Offline Meta-level Model-based Reinforcement Learning Approach for
Cold-Start Recommendation [27.17948754183511]
Reinforcement learning has shown great promise in optimizing long-term user interest in recommender systems.
Existing RL-based recommendation methods need a large number of interactions for each user to learn a robust recommendation policy.
We propose a meta-level model-based reinforcement learning approach for fast user adaptation.
arXiv Detail & Related papers (2020-12-04T08:58:35Z) - Generative Inverse Deep Reinforcement Learning for Online Recommendation [62.09946317831129]
We propose a novel inverse reinforcement learning approach, namely InvRec, for online recommendation.
InvRec extracts the reward function from user's behaviors automatically, for online recommendation.
arXiv Detail & Related papers (2020-11-04T12:12:25Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
We propose self-supervised reinforcement learning for sequential recommendation tasks.
Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL.
Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC)
arXiv Detail & Related papers (2020-06-10T11:18:57Z) - Empowering Active Learning to Jointly Optimize System and User Demands [70.66168547821019]
We propose a new active learning approach that jointly optimize the active learning system (training efficiently) and the user (receiving useful instances)
We study our approach in an educational application, which particularly benefits from this technique as the system needs to rapidly learn to predict the appropriateness of an exercise to a particular user.
We evaluate multiple learning strategies and user types with data from real users and find that our joint approach better satisfies both objectives when alternative methods lead to many unsuitable exercises for end users.
arXiv Detail & Related papers (2020-05-09T16:02:52Z) - Reward Constrained Interactive Recommendation with Natural Language
Feedback [158.8095688415973]
We propose a novel constraint-augmented reinforcement learning (RL) framework to efficiently incorporate user preferences over time.
Specifically, we leverage a discriminator to detect recommendations violating user historical preference.
Our proposed framework is general and is further extended to the task of constrained text generation.
arXiv Detail & Related papers (2020-05-04T16:23:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.