Learning Recommender Systems with Soft Target: A Decoupled Perspective
- URL: http://arxiv.org/abs/2410.06536v1
- Date: Wed, 09 Oct 2024 04:20:15 GMT
- Title: Learning Recommender Systems with Soft Target: A Decoupled Perspective
- Authors: Hao Zhang, Mingyue Cheng, Qi Liu, Yucong Luo, Rui Li, Enhong Chen,
- Abstract summary: We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
- Score: 49.83787742587449
- License:
- Abstract: Learning recommender systems with multi-class optimization objective is a prevalent setting in recommendation. However, as observed user feedback often accounts for a tiny fraction of the entire item pool, the standard Softmax loss tends to ignore the difference between potential positive feedback and truly negative feedback. To address this challenge, we propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels, including target confidence and the latent interest distribution of non-target items. Futhermore, based on our carefully theoretical analysis, we design a decoupled loss function to flexibly adjust the importance of these two aspects. To maximize the performance of the proposed method, we additionally present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors. We conduct extensive experiments on various recommendation system models and public datasets, the results demonstrate the effectiveness and generality of the proposed method.
Related papers
- Correcting for Popularity Bias in Recommender Systems via Item Loss Equalization [1.7771454131646311]
A small set of popular items dominate the recommendation results due to their high interaction rates.
This phenomenon disproportionately benefits users with mainstream tastes while neglecting those with niche interests.
We propose an in-processing approach to address this issue by intervening in the training process of recommendation models.
arXiv Detail & Related papers (2024-10-07T08:34:18Z) - Exploiting Preferences in Loss Functions for Sequential Recommendation via Weak Transitivity [4.7894654945375175]
A choice of optimization objective is immensely pivotal in the design of a recommender system.
We propose a novel method that extends original objectives to explicitly leverage the different levels of preferences as relative orders between their scores.
arXiv Detail & Related papers (2024-08-01T06:55:19Z) - Deep Pareto Reinforcement Learning for Multi-Objective Recommender Systems [60.91599969408029]
optimizing multiple objectives simultaneously is an important task for recommendation platforms.
Existing multi-objective recommender systems do not systematically consider such dynamic relationships.
arXiv Detail & Related papers (2024-07-04T02:19:49Z) - Beyond Thumbs Up/Down: Untangling Challenges of Fine-Grained Feedback for Text-to-Image Generation [67.88747330066049]
Fine-grained feedback captures nuanced distinctions in image quality and prompt-alignment.
We show that demonstrating its superiority to coarse-grained feedback is not automatic.
We identify key challenges in eliciting and utilizing fine-grained feedback.
arXiv Detail & Related papers (2024-06-24T17:19:34Z) - Improving One-class Recommendation with Multi-tasking on Various
Preference Intensities [1.8416014644193064]
In one-class recommendation, it's required to make recommendations based on users' implicit feedback.
We propose a multi-tasking framework taking various preference intensities of each signal from implicit feedback into consideration.
Our method performs better than state-of-the-art methods by a large margin on three large-scale real-world benchmark datasets.
arXiv Detail & Related papers (2024-01-18T18:59:55Z) - When Measures are Unreliable: Imperceptible Adversarial Perturbations
toward Top-$k$ Multi-Label Learning [83.8758881342346]
A novel loss function is devised to generate adversarial perturbations that could achieve both visual and measure imperceptibility.
Experiments on large-scale benchmark datasets demonstrate the superiority of our proposed method in attacking the top-$k$ multi-label systems.
arXiv Detail & Related papers (2023-07-27T13:18:47Z) - CausPref: Causal Preference Learning for Out-of-Distribution
Recommendation [36.22965012642248]
The current recommender system is still vulnerable to the distribution shift of users and items in realistic scenarios.
We propose to incorporate the recommendation-specific DAG learner into a novel causal preference-based recommendation framework named CausPref.
Our approach surpasses the benchmark models significantly under types of out-of-distribution settings.
arXiv Detail & Related papers (2022-02-08T16:42:03Z) - Unbiased Pairwise Learning to Rank in Recommender Systems [4.058828240864671]
Unbiased learning to rank algorithms are appealing candidates and have already been applied in many applications with single categorical labels.
We propose a novel unbiased LTR algorithm to tackle the challenges, which innovatively models position bias in the pairwise fashion.
Experiment results on public benchmark datasets and internal live traffic show the superior results of the proposed method for both categorical and continuous labels.
arXiv Detail & Related papers (2021-11-25T06:04:59Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
We introduce Scalarized Multi-Objective Reinforcement Learning (SMORL) for the Recommender Systems (RS) setting.
SMORL agent augments standard recommendation models with additional RL layers that enforce it to simultaneously satisfy three principal objectives: accuracy, diversity, and novelty of recommendations.
Our experimental results on two real-world datasets reveal a substantial increase in aggregate diversity, a moderate increase in accuracy, reduced repetitiveness of recommendations, and demonstrate the importance of reinforcing diversity and novelty as complementary objectives.
arXiv Detail & Related papers (2021-10-28T13:22:45Z) - Latent Unexpected Recommendations [89.2011481379093]
We propose to model unexpectedness in the latent space of user and item embeddings, which allows to capture hidden and complex relations between new recommendations and historic purchases.
In addition, we develop a novel Latent Closure (LC) method to construct hybrid utility function and provide unexpected recommendations based on the proposed model.
arXiv Detail & Related papers (2020-07-27T02:39:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.