論文の概要: Cross-domain Transfer of defect features in technical domains based on
partial target data
- arxiv url: http://arxiv.org/abs/2211.13662v2
- Date: Mon, 24 Apr 2023 18:36:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 03:37:25.914959
- Title: Cross-domain Transfer of defect features in technical domains based on
partial target data
- Title(参考訳): 部分対象データに基づく技術領域における欠陥のクロスドメイン転送
- Authors: Tobias Schlagenhauf, Tim Scheurenbrand
- Abstract要約: 多くの技術的ドメインでは、不十分に表現されているのは欠陥やデファクトクラスのみである。
提案手法は,CNNエンコーダをベースとして,そのような条件に対処する。
技術的および非技術的領域でベンチマークされ、合理的な分類結果を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A common challenge in real world classification scenarios with sequentially
appending target domain data is insufficient training datasets during the
training phase. Therefore, conventional deep learning and transfer learning
classifiers are not applicable especially when individual classes are not
represented or are severely underrepresented at the outset. In many technical
domains, however, it is only the defect or worn reject classes that are
insufficiently represented, while the non-defect class is often available from
the beginning. The proposed classification approach addresses such conditions
and is based on a CNN encoder. Following a contrastive learning approach, it is
trained with a modified triplet loss function using two datasets: Besides the
non-defective target domain class 1st dataset, a state-of-the-art labeled
source domain dataset that contains highly related classes e.g., a related
manufacturing error or wear defect but originates from a highly different
domain e.g., different product, material, or appearance = 2nd dataset is
utilized. The approach learns the classification features from the source
domain dataset while at the same time learning the differences between the
source and the target domain in a single training step, aiming to transfer the
relevant features to the target domain. The classifier becomes sensitive to the
classification features and by architecture robust against the highly
domain-specific context. The approach is benchmarked in a technical and a
non-technical domain and shows convincing classification results. In
particular, it is shown that the domain generalization capabilities and
classification results are improved by the proposed architecture, allowing for
larger domain shifts between source and target domains.
- Abstract(参考訳): ターゲットドメインデータを逐次追加する現実世界の分類シナリオにおける一般的な課題は、トレーニングフェーズにおけるデータセットの不足である。
したがって、従来のディープラーニングや転校学習分類器は、特に個々のクラスが表現されていない場合や、そもそも過小評価されている場合には適用されない。
しかし、多くの技術領域では、欠陥や不十分な表現が不十分なrejectクラスのみであり、非defectクラスは最初から利用可能であることが多い。
提案手法は,CNNエンコーダをベースとして,そのような条件に対処する。
対照的な学習アプローチに従って、2つのデータセットを使用して修正三重項損失関数をトレーニングする: 非欠陥対象ドメインクラス 1stデータセットに加えて、関連する製造エラーや欠陥など、関連性の高いクラスを含む最先端のラベル付きソースドメインデータセットが使用されるが、異なる製品、材料、外観など、非常に異なるドメインに由来する。
このアプローチは、ソースドメインデータセットから分類特徴を学習すると同時に、ソースとターゲットドメインの違いを単一のトレーニングステップで学習し、関連する機能をターゲットドメインに転送することを目的としている。
分類器は分類機能に敏感になり、高度にドメイン固有のコンテキストに対して堅牢なアーキテクチャとなる。
このアプローチは技術的および非技術的領域でベンチマークされ、合理的な分類結果を示す。
特に、提案するアーキテクチャにより、ドメインの一般化能力と分類結果が改善され、ソースドメインとターゲットドメインの間のより広いドメインシフトが可能になることが示されている。
関連論文リスト
- Data-Efficient CLIP-Powered Dual-Branch Networks for Source-Free Unsupervised Domain Adaptation [4.7589762171821715]
Source-free Unsupervised Domain Adaptation (SF-UDA) は、ソースサンプルに直接アクセスすることなく、ラベル付きソースドメインからラベルなしターゲットドメインにモデルのパフォーマンスを転送することを目的としている。
データ効率のよいCLIP方式のデュアルブランチネットワーク(CDBN)を導入し、限られたソースデータとプライバシの問題に対処する。
CDBNは、7つのデータセット上の31の転送タスクにわたる既存のメソッドよりもはるかに少ないソースドメインサンプルで、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2024-10-21T09:25:49Z) - Domain Adaptive Semantic Segmentation without Source Data [50.18389578589789]
モデルがソースドメイン上で事前学習されていることを前提として、ソースデータのないドメイン適応セマンティックセマンティックセマンティックセマンティクスについて検討する。
本稿では,この課題に対して,肯定的学習と否定的学習という2つの要素を用いた効果的な枠組みを提案する。
私たちのフレームワークは、パフォーマンスをさらに向上するために、他のメソッドに簡単に実装および組み込むことができます。
論文 参考訳(メタデータ) (2021-10-13T04:12:27Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
教師なしドメイン適応(Unsupervised domain adapt、UDA)は、完全にラベル付けされたソースドメインから異なるラベル付けされていないターゲットドメインに学習した知識を転送することを目的としている。
対照的な自己教師型学習に基づいて、トレーニングとテストセット間のドメインの相違を低減するために、機能を整列させます。
論文 参考訳(メタデータ) (2021-06-10T06:32:30Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDAはラベル付きソースドメインからラベルなしターゲットドメインへの効率的な知識伝達を試みている。
本稿では,領域にまたがるカテゴリ別センタロイドを適応させるコントラスト学習手法を提案する。
提案手法を自己学習で拡張し,メモリ効率の良い時間アンサンブルを用いて一貫性と信頼性の高い擬似ラベルを生成する。
論文 参考訳(メタデータ) (2021-05-05T11:55:53Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
ILA-DAと呼ばれる適応中のソースからターゲットへの転送に対するインスタンス親和性に基づく基準を提案する。
まず、ソースとターゲットをまたいだ類似および異種サンプルを抽出し、マルチサンプルのコントラスト損失を利用してドメインアライメントプロセスを駆動する信頼性が高く効率的な手法を提案する。
ILA-DAの有効性は、様々なベンチマークデータセットに対する一般的なドメイン適応手法よりも精度が一貫した改善を観察することによって検証する。
論文 参考訳(メタデータ) (2021-04-03T01:33:14Z) - Weak Adaptation Learning -- Addressing Cross-domain Data Insufficiency
with Weak Annotator [2.8672054847109134]
一部のターゲット問題ドメインでは、学習プロセスを妨げる可能性のあるデータサンプルがあまりありません。
類似のソースドメインからのラベルなしデータを活用した弱い適応学習(wal)手法を提案する。
本実験は,対象領域に限定されたラベル付きデータを含む正確な分類器を学習する手法の有効性を示す。
論文 参考訳(メタデータ) (2021-02-15T06:19:25Z) - Against Adversarial Learning: Naturally Distinguish Known and Unknown in
Open Set Domain Adaptation [17.819949636876018]
オープンセットドメイン適応は、ターゲットドメインがソースドメインに存在しないカテゴリを含むというシナリオを指す。
本研究では,未知のターゲットデータと未知のデータとを自然に識別できる「逆学習」手法を提案する。
実験結果から,提案手法はいくつかの最先端手法と比較して性能を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-11-04T10:30:43Z) - Adversarial Consistent Learning on Partial Domain Adaptation of
PlantCLEF 2020 Challenge [26.016647703500883]
我々は、部分的ドメイン適応のための統合された深層アーキテクチャにおいて、逆一貫した学習(ACL$)を開発する。
ソースドメインの分類損失、逆学習損失、特徴整合損失からなる。
2つのドメインの共有カテゴリは、ソースドメインの無関係なカテゴリを低重み付けすることで見つける。
論文 参考訳(メタデータ) (2020-09-19T19:57:41Z) - Cross-domain Self-supervised Learning for Domain Adaptation with Few
Source Labels [78.95901454696158]
ドメイン適応のためのクロスドメイン自己教師型学習手法を提案する。
本手法は,ソースラベルが少ない新しいターゲット領域において,ターゲット精度を著しく向上させる。
論文 参考訳(メタデータ) (2020-03-18T15:11:07Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
ドメイン適応(DA)は、よくラベル付けされたソースドメイン上でトレーニングされたモデルを、異なる分散に横たわる未ラベルのターゲットドメインに適応することを目的としています。
本研究では,新規な生成的Few-shot Cross-Domain Adaptation (GFCA) アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-03-04T23:25:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。