Meta-Learning for Automated Selection of Anomaly Detectors for
Semi-Supervised Datasets
- URL: http://arxiv.org/abs/2211.13681v1
- Date: Thu, 24 Nov 2022 15:56:27 GMT
- Title: Meta-Learning for Automated Selection of Anomaly Detectors for
Semi-Supervised Datasets
- Authors: David Schubert, Pritha Gupta, Marcel Wever
- Abstract summary: In anomaly detection, a prominent task is to induce a model to identify anomalies learned solely based on normal data.
We propose to employ meta-learning to predict MCC scores based on metrics that can be computed with normal data only.
- Score: 4.841365627573421
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In anomaly detection, a prominent task is to induce a model to identify
anomalies learned solely based on normal data. Generally, one is interested in
finding an anomaly detector that correctly identifies anomalies, i.e., data
points that do not belong to the normal class, without raising too many false
alarms. Which anomaly detector is best suited depends on the dataset at hand
and thus needs to be tailored. The quality of an anomaly detector may be
assessed via confusion-based metrics such as the Matthews correlation
coefficient (MCC). However, since during training only normal data is available
in a semi-supervised setting, such metrics are not accessible. To facilitate
automated machine learning for anomaly detectors, we propose to employ
meta-learning to predict MCC scores based on metrics that can be computed with
normal data only. First promising results can be obtained considering the
hypervolume and the false positive rate as meta-features.
Related papers
- Anomaly Detection of Tabular Data Using LLMs [54.470648484612866]
We show that pre-trained large language models (LLMs) are zero-shot batch-level anomaly detectors.
We propose an end-to-end fine-tuning strategy to bring out the potential of LLMs in detecting real anomalies.
arXiv Detail & Related papers (2024-06-24T04:17:03Z) - Deep Positive-Unlabeled Anomaly Detection for Contaminated Unlabeled Data [31.029029510114448]
Existing semi-supervised approaches assume that unlabeled data are mostly normal.
We propose the positive-unlabeled autoencoder, which is based on positive-unlabeled learning and the anomaly detector such as the autoencoder.
Our approach achieves better detection performance than existing approaches.
arXiv Detail & Related papers (2024-05-29T09:34:47Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
Unsupervised anomaly detection (UAD) attracts a lot of research interest and drives widespread applications.
An inconspicuous yet powerful statistics model, the normalizing flows, is appropriate for anomaly detection and localization in an unsupervised fashion.
We propose a novel Multi-Scale Flow-based framework dubbed MSFlow composed of asymmetrical parallel flows followed by a fusion flow.
Our MSFlow achieves a new state-of-the-art with a detection AUORC score of up to 99.7%, localization AUCROC score of 98.8%, and PRO score of 97.1%.
arXiv Detail & Related papers (2023-08-29T13:38:35Z) - AGAD: Adversarial Generative Anomaly Detection [12.68966318231776]
Anomaly detection suffered from the lack of anomalies due to the diversity of abnormalities and the difficulties of obtaining large-scale anomaly data.
We propose Adversarial Generative Anomaly Detection (AGAD), a self-contrast-based anomaly detection paradigm.
Our method generates pseudo-anomaly data for both supervised and semi-supervised anomaly detection scenarios.
arXiv Detail & Related papers (2023-04-09T10:40:02Z) - Perturbation Learning Based Anomaly Detection [19.41730292017383]
The main idea is to learn small perturbations to perturb normal data and learn a classifier to classify the normal data and the perturbed data into two different classes.
The perturbations should be as small as possible but the classifier is still able to recognize the perturbed data from unperturbed data.
Compared with the state-of-the-art of anomaly detection, our method does not require any assumption about the shape of the decision boundary.
arXiv Detail & Related papers (2022-06-06T16:01:01Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
Anomaly detection is a fundamental yet challenging problem in machine learning.
We propose a novel and powerful framework, dubbed as SLA$2$P, for unsupervised anomaly detection.
arXiv Detail & Related papers (2021-11-25T03:53:43Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Understanding the Effect of Bias in Deep Anomaly Detection [15.83398707988473]
Anomaly detection presents a unique challenge in machine learning, due to the scarcity of labeled anomaly data.
Recent work attempts to mitigate such problems by augmenting training of deep anomaly detection models with additional labeled anomaly samples.
In this paper, we aim to understand the effect of a biased anomaly set on anomaly detection.
arXiv Detail & Related papers (2021-05-16T03:55:02Z) - Out-Of-Bag Anomaly Detection [0.9449650062296822]
Data anomalies are ubiquitous in real world datasets, and can have an adverse impact on machine learning (ML) systems.
We propose a novel model-based anomaly detection method, that we call Out-of-Bag anomaly detection.
We show our method can improve the accuracy and reliability of an ML system as data pre-processing step via a case study on home valuation.
arXiv Detail & Related papers (2020-09-20T06:01:52Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
Pairwise Relation prediction Network (PReNet) learns pairwise relation features and anomaly scores.
PReNet can detect any seen/unseen abnormalities that fit the learned pairwise abnormal patterns.
Empirical results on 12 real-world datasets show that PReNet significantly outperforms nine competing methods in detecting seen and unseen anomalies.
arXiv Detail & Related papers (2019-10-30T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.