AGAD: Adversarial Generative Anomaly Detection
- URL: http://arxiv.org/abs/2304.04211v1
- Date: Sun, 9 Apr 2023 10:40:02 GMT
- Title: AGAD: Adversarial Generative Anomaly Detection
- Authors: Jian Shi and Ni Zhang
- Abstract summary: Anomaly detection suffered from the lack of anomalies due to the diversity of abnormalities and the difficulties of obtaining large-scale anomaly data.
We propose Adversarial Generative Anomaly Detection (AGAD), a self-contrast-based anomaly detection paradigm.
Our method generates pseudo-anomaly data for both supervised and semi-supervised anomaly detection scenarios.
- Score: 12.68966318231776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection suffered from the lack of anomalies due to the diversity of
abnormalities and the difficulties of obtaining large-scale anomaly data.
Semi-supervised anomaly detection methods are often used to solely leverage
normal data to detect abnormalities that deviated from the learnt normality
distributions. Meanwhile, given the fact that limited anomaly data can be
obtained with a minor cost in practice, some researches also investigated
anomaly detection methods under supervised scenarios with limited anomaly data.
In order to address the lack of abnormal data for robust anomaly detection, we
propose Adversarial Generative Anomaly Detection (AGAD), a self-contrast-based
anomaly detection paradigm that learns to detect anomalies by generating
\textit{contextual adversarial information} from the massive normal examples.
Essentially, our method generates pseudo-anomaly data for both supervised and
semi-supervised anomaly detection scenarios. Extensive experiments are carried
out on multiple benchmark datasets and real-world datasets, the results show
significant improvement in both supervised and semi-supervised scenarios.
Importantly, our approach is data-efficient that can boost up the detection
accuracy with no more than 5% anomalous training data.
Related papers
- Deep Positive-Unlabeled Anomaly Detection for Contaminated Unlabeled Data [31.029029510114448]
Existing semi-supervised approaches assume that unlabeled data are mostly normal.
We propose the positive-unlabeled autoencoder, which is based on positive-unlabeled learning and the anomaly detector such as the autoencoder.
Our approach achieves better detection performance than existing approaches.
arXiv Detail & Related papers (2024-05-29T09:34:47Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - AnomalyDiffusion: Few-Shot Anomaly Image Generation with Diffusion Model [59.08735812631131]
Anomaly inspection plays an important role in industrial manufacture.
Existing anomaly inspection methods are limited in their performance due to insufficient anomaly data.
We propose AnomalyDiffusion, a novel diffusion-based few-shot anomaly generation model.
arXiv Detail & Related papers (2023-12-10T05:13:40Z) - SaliencyCut: Augmenting Plausible Anomalies for Anomaly Detection [24.43321988051129]
We propose a novel saliency-guided data augmentation method, SaliencyCut, to produce pseudo but more common anomalies.
We then design a novel patch-wise residual module in the anomaly learning head to extract and assess the fine-grained anomaly features from each sample.
arXiv Detail & Related papers (2023-06-14T08:55:36Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
A few labeled anomaly examples are often available in many real-world applications.
These anomaly examples provide valuable knowledge about the application-specific abnormality.
Those anomalies seen during training often do not illustrate every possible class of anomaly.
This paper tackles open-set supervised anomaly detection.
arXiv Detail & Related papers (2022-03-28T05:21:37Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
We introduce a novel weakly-supervised anomaly detection framework to train detection models.
The proposed approach learns discriminative normality by leveraging the labeled anomalies and a prior probability.
Our model is substantially more sample-efficient and robust, and performs significantly better than state-of-the-art competing methods in both closed-set and open-set settings.
arXiv Detail & Related papers (2021-08-01T14:33:17Z) - Understanding the Effect of Bias in Deep Anomaly Detection [15.83398707988473]
Anomaly detection presents a unique challenge in machine learning, due to the scarcity of labeled anomaly data.
Recent work attempts to mitigate such problems by augmenting training of deep anomaly detection models with additional labeled anomaly samples.
In this paper, we aim to understand the effect of a biased anomaly set on anomaly detection.
arXiv Detail & Related papers (2021-05-16T03:55:02Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
Pairwise Relation prediction Network (PReNet) learns pairwise relation features and anomaly scores.
PReNet can detect any seen/unseen abnormalities that fit the learned pairwise abnormal patterns.
Empirical results on 12 real-world datasets show that PReNet significantly outperforms nine competing methods in detecting seen and unseen anomalies.
arXiv Detail & Related papers (2019-10-30T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.