Estimating Regression Predictive Distributions with Sample Networks
- URL: http://arxiv.org/abs/2211.13724v1
- Date: Thu, 24 Nov 2022 17:23:29 GMT
- Title: Estimating Regression Predictive Distributions with Sample Networks
- Authors: Ali Harakeh, Jordan Hu, Naiqing Guan, Steven L. Waslander, and Liam
Paull
- Abstract summary: A common approach to model uncertainty is to choose a parametric distribution and fit the data to it using maximum likelihood estimation.
The chosen parametric form can be a poor fit to the data-generating distribution, resulting in unreliable uncertainty estimates.
We propose SampleNet, a flexible and scalable architecture for modeling uncertainty that avoids specifying a parametric form on the output distribution.
- Score: 17.935136717050543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating the uncertainty in deep neural network predictions is crucial for
many real-world applications. A common approach to model uncertainty is to
choose a parametric distribution and fit the data to it using maximum
likelihood estimation. The chosen parametric form can be a poor fit to the
data-generating distribution, resulting in unreliable uncertainty estimates. In
this work, we propose SampleNet, a flexible and scalable architecture for
modeling uncertainty that avoids specifying a parametric form on the output
distribution. SampleNets do so by defining an empirical distribution using
samples that are learned with the Energy Score and regularized with the
Sinkhorn Divergence. SampleNets are shown to be able to well-fit a wide range
of distributions and to outperform baselines on large-scale real-world
regression tasks.
Related papers
- Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Variational autoencoder with weighted samples for high-dimensional
non-parametric adaptive importance sampling [0.0]
We extend the existing framework to the case of weighted samples by introducing a new objective function.
In order to add flexibility to the model and to be able to learn multimodal distributions, we consider a learnable prior distribution.
We exploit the proposed procedure in existing adaptive importance sampling algorithms to draw points from a target distribution and to estimate a rare event probability in high dimension.
arXiv Detail & Related papers (2023-10-13T15:40:55Z) - Deep Evidential Learning for Bayesian Quantile Regression [3.6294895527930504]
It is desirable to have accurate uncertainty estimation from a single deterministic forward-pass model.
This paper proposes a deep Bayesian quantile regression model that can estimate the quantiles of a continuous target distribution without the Gaussian assumption.
arXiv Detail & Related papers (2023-08-21T11:42:16Z) - Collapsed Inference for Bayesian Deep Learning [36.1725075097107]
We introduce a novel collapsed inference scheme that performs Bayesian model averaging using collapsed samples.
A collapsed sample represents uncountably many models drawn from the approximate posterior.
Our proposed use of collapsed samples achieves a balance between scalability and accuracy.
arXiv Detail & Related papers (2023-06-16T08:34:42Z) - How to Combine Variational Bayesian Networks in Federated Learning [0.0]
Federated learning enables multiple data centers to train a central model collaboratively without exposing any confidential data.
deterministic models are capable of performing high prediction accuracy, their lack of calibration and capability to quantify uncertainty is problematic for safety-critical applications.
We study the effects of various aggregation schemes for variational Bayesian neural networks.
arXiv Detail & Related papers (2022-06-22T07:53:12Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z) - Distributionally Robust Chance Constrained Programming with Generative
Adversarial Networks (GANs) [0.0]
A novel generative adversarial network (GAN) based data-driven distributionally robust chance constrained programming framework is proposed.
GAN is applied to fully extract distributional information from historical data in a nonparametric and unsupervised way.
The proposed framework is then applied to supply chain optimization under demand uncertainty.
arXiv Detail & Related papers (2020-02-28T00:05:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.