Deep Evidential Learning for Bayesian Quantile Regression
- URL: http://arxiv.org/abs/2308.10650v1
- Date: Mon, 21 Aug 2023 11:42:16 GMT
- Title: Deep Evidential Learning for Bayesian Quantile Regression
- Authors: Frederik Boe H\"uttel, Filipe Rodrigues, Francisco C\^amara Pereira
- Abstract summary: It is desirable to have accurate uncertainty estimation from a single deterministic forward-pass model.
This paper proposes a deep Bayesian quantile regression model that can estimate the quantiles of a continuous target distribution without the Gaussian assumption.
- Score: 3.6294895527930504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is desirable to have accurate uncertainty estimation from a single
deterministic forward-pass model, as traditional methods for uncertainty
quantification are computationally expensive. However, this is difficult
because single forward-pass models do not sample weights during inference and
often make assumptions about the target distribution, such as assuming it is
Gaussian. This can be restrictive in regression tasks, where the mean and
standard deviation are inadequate to model the target distribution accurately.
This paper proposes a deep Bayesian quantile regression model that can estimate
the quantiles of a continuous target distribution without the Gaussian
assumption. The proposed method is based on evidential learning, which allows
the model to capture aleatoric and epistemic uncertainty with a single
deterministic forward-pass model. This makes the method efficient and scalable
to large models and datasets. We demonstrate that the proposed method achieves
calibrated uncertainties on non-Gaussian distributions, disentanglement of
aleatoric and epistemic uncertainty, and robustness to out-of-distribution
samples.
Related papers
- Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials [0.0]
Uncertainty estimations for machine learning interatomic potentials are crucial to quantify the additional model error they introduce.
We consider GPR models with Coulomb and SOAP representations as inputs to predict potential energy surfaces and excitation energies of molecules.
We evaluate, how the GPR variance and ensemble-based uncertainties relate to the error and whether model performance improves by selecting the most uncertain samples from a fixed configuration space.
arXiv Detail & Related papers (2024-10-27T10:06:09Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Estimating Regression Predictive Distributions with Sample Networks [17.935136717050543]
A common approach to model uncertainty is to choose a parametric distribution and fit the data to it using maximum likelihood estimation.
The chosen parametric form can be a poor fit to the data-generating distribution, resulting in unreliable uncertainty estimates.
We propose SampleNet, a flexible and scalable architecture for modeling uncertainty that avoids specifying a parametric form on the output distribution.
arXiv Detail & Related papers (2022-11-24T17:23:29Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Theoretical characterization of uncertainty in high-dimensional linear
classification [24.073221004661427]
We show that uncertainty for learning from limited number of samples of high-dimensional input data and labels can be obtained by the approximate message passing algorithm.
We discuss how over-confidence can be mitigated by appropriately regularising, and show that cross-validating with respect to the loss leads to better calibration than with the 0/1 error.
arXiv Detail & Related papers (2022-02-07T15:32:07Z) - Uncertainty estimation under model misspecification in neural network
regression [3.2622301272834524]
We study the effect of the model choice on uncertainty estimation.
We highlight that under model misspecification, aleatoric uncertainty is not properly captured.
arXiv Detail & Related papers (2021-11-23T10:18:41Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
Uncertainty is the only certainty there is.
Traditionally, the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions.
How to model the uncertainty within the present-day technologies for regression remains an open issue.
arXiv Detail & Related papers (2021-03-25T06:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.