論文の概要: Neural Weight Search for Scalable Task Incremental Learning
- arxiv url: http://arxiv.org/abs/2211.13823v1
- Date: Thu, 24 Nov 2022 23:30:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 16:55:31.512337
- Title: Neural Weight Search for Scalable Task Incremental Learning
- Title(参考訳): スケーラブルタスクインクリメンタル学習のためのニューラルウェイト探索
- Authors: Jian Jiang, Oya Celiktutan
- Abstract要約: タスクインクリメンタル学習は,新たなタスクを学習しながら,それまでの学習したタスクのパフォーマンスを維持することを目的として,破滅的な忘れを解消する。
有望なアプローチの1つは、将来のタスクのために個々のネットワークやサブネットワークを構築することである。
これにより、新しいタスクに対する余分な負担を省き、この問題に対処する方法がタスクインクリメンタルな学習においてオープンな問題として残されているため、メモリの増大が続く。
- 参考スコア(独自算出の注目度): 6.413209417643468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task incremental learning aims to enable a system to maintain its performance
on previously learned tasks while learning new tasks, solving the problem of
catastrophic forgetting. One promising approach is to build an individual
network or sub-network for future tasks. However, this leads to an ever-growing
memory due to saving extra weights for new tasks and how to address this issue
has remained an open problem in task incremental learning. In this paper, we
introduce a novel Neural Weight Search technique that designs a fixed search
space where the optimal combinations of frozen weights can be searched to build
new models for novel tasks in an end-to-end manner, resulting in scalable and
controllable memory growth. Extensive experiments on two benchmarks, i.e.,
Split-CIFAR-100 and CUB-to-Sketches, show our method achieves state-of-the-art
performance with respect to both average inference accuracy and total memory
cost.
- Abstract(参考訳): タスクインクリメンタル学習は、システムが新しいタスクを学習しながら、以前に学習したタスクのパフォーマンスを維持することを可能にすることを目的としている。
有望なアプローチの1つは、将来のタスクのために個々のネットワークまたはサブネットワークを構築することである。
しかし、新しいタスクの余分な負担を省き、この問題に対処する方法がタスクインクリメンタルな学習においてオープンな問題として残されているため、このことが記憶の増大につながっている。
本稿では,凍結重みの最適組み合わせを探索可能な固定探索空間を設計し,新しいタスクのための新しいモデルをエンドツーエンドに構築し,スケーラブルで制御可能なメモリ成長を実現するニューラルウェイト探索手法を提案する。
Split-CIFAR-100 と CUB-to-Sketches の2つのベンチマークによる大規模な実験により,提案手法は平均推定精度と総メモリコストの両方において最先端の性能を達成することを示した。
関連論文リスト
- Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
破滅的な忘れは、機械学習の分野で重要な課題である。
本稿では,機械学習アプリケーションにおける破滅的忘れを防止する新しい方法を提案する。
論文 参考訳(メタデータ) (2023-11-30T22:43:50Z) - Efficient Rehearsal Free Zero Forgetting Continual Learning using
Adaptive Weight Modulation [3.6683171094134805]
継続的な学習には、長期にわたって複数のタスクの知識を取得することが含まれる。
この問題に対するほとんどのアプローチは、新しいタスクのパフォーマンスを最大化することと、以前のタスクの忘れを最小化することのバランスを求める。
提案手法は,新しいタスクの性能を最大化しつつ,忘れることのゼロを保証しようとするものである。
論文 参考訳(メタデータ) (2023-11-26T12:36:05Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Dense Network Expansion for Class Incremental Learning [61.00081795200547]
最先端のアプローチでは、ネットワーク拡張(NE)に基づいた動的アーキテクチャを使用し、タスクごとにタスクエキスパートを追加する。
精度とモデル複雑性のトレードオフを改善するために,新しい NE 手法である高密度ネットワーク拡張 (DNE) を提案する。
従来のSOTA法では、類似またはより小さなモデルスケールで、精度の点で4%のマージンで性能が向上した。
論文 参考訳(メタデータ) (2023-03-22T16:42:26Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
継続学習(CL)手法は、機械学習モデルが、以前にマスターされたタスクを壊滅的に忘れることなく、新しいタスクを学習できるようにすることを目的としている。
既存のCLアプローチは、しばしば、事前に確認されたサンプルのバッファを保持し、知識蒸留を行い、あるいはこの目標に向けて正規化技術を使用する。
我々は,現在および過去のタスクを任意の段階で学習するために,スパースニューロンのみを活性化し,選択することを提案する。
論文 参考訳(メタデータ) (2022-02-21T13:25:03Z) - GROWN: GRow Only When Necessary for Continual Learning [39.56829374809613]
ディープニューラルネットワーク(Deep Neural Networks, DNN)は、新しいタスクを学ぶ際に、以前のタスクに関する知識を忘れてしまう。
この問題に対処するために、新しいタスクを逐次学習し、忘れずに古いタスクから新しいタスクへの知識伝達を行う連続学習が開発された。
GROWNは、必要な時にのみモデルを動的に成長させる、新しいエンドツーエンドの継続的学習フレームワークである。
論文 参考訳(メタデータ) (2021-10-03T02:31:04Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
シーケンスコンディショニングと重み付きサンプリングのレンズによるマルチタスク学習の実現を目指している。
合成タスクを対象とした新しいベンチマークであるMultiRavensを提案する。
次に,視覚に基づくエンドツーエンドシステムアーキテクチャであるSequence-Conditioned Transporter Networksを提案する。
論文 参考訳(メタデータ) (2021-09-15T21:19:11Z) - Continual Learning via Bit-Level Information Preserving [88.32450740325005]
我々は情報理論のレンズを通して連続学習過程を研究する。
モデルパラメータの情報利得を維持するビットレベル情報保存(BLIP)を提案する。
BLIPは、連続的な学習を通してメモリオーバーヘッドを一定に保ちながら、ほとんど忘れることができない。
論文 参考訳(メタデータ) (2021-05-10T15:09:01Z) - Rectification-based Knowledge Retention for Continual Learning [49.1447478254131]
ディープラーニングモデルは、インクリメンタルな学習環境で訓練されたときに壊滅的な忘れに苦しむ。
タスクインクリメンタル学習問題に対処するための新しいアプローチを提案する。これは、インクリメンタルに到着する新しいタスクに関するモデルをトレーニングすることを含む。
私たちのアプローチは、ゼロショットと非ゼロショットタスクインクリメンタルラーニング設定の両方で使用できます。
論文 参考訳(メタデータ) (2021-03-30T18:11:30Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
我々は,様々なタスクを解くことを目的とした回帰関数の集合を適合させることで,マルチタスク学習と呼ばれる問題を考える。
我々の新しい定式化では、これらの関数のパラメータを2つに分けて、互いに近づきながらタスク固有のドメインで学習する。
これにより、異なるドメインにまたがって収集されたデータが、互いのタスクにおける学習パフォーマンスを改善するのに役立つ、クロス・ファーティライズが促進される。
論文 参考訳(メタデータ) (2020-10-24T21:35:57Z) - SpaceNet: Make Free Space For Continual Learning [15.914199054779438]
本研究では,クラスインクリメンタル学習シナリオのための新しいアーキテクチャベースのSpaceNetを提案する。
SpaceNetは、複数のニューロンで各タスクのスパース接続を圧縮する適応的な方法で、スクラッチから深層ニューラルネットワークを訓練する。
実験により,従来のタスクを忘れることに対する提案手法のロバストさと,モデルが利用可能な容量を利用する場合のSpaceNetの効率性を示す。
論文 参考訳(メタデータ) (2020-07-15T11:21:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。