Neural Weight Search for Scalable Task Incremental Learning
- URL: http://arxiv.org/abs/2211.13823v1
- Date: Thu, 24 Nov 2022 23:30:23 GMT
- Title: Neural Weight Search for Scalable Task Incremental Learning
- Authors: Jian Jiang, Oya Celiktutan
- Abstract summary: Task incremental learning aims to enable a system to maintain its performance on previously learned tasks while learning new tasks, solving the problem of catastrophic forgetting.
One promising approach is to build an individual network or sub-network for future tasks.
This leads to an ever-growing memory due to saving extra weights for new tasks and how to address this issue has remained an open problem in task incremental learning.
- Score: 6.413209417643468
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task incremental learning aims to enable a system to maintain its performance
on previously learned tasks while learning new tasks, solving the problem of
catastrophic forgetting. One promising approach is to build an individual
network or sub-network for future tasks. However, this leads to an ever-growing
memory due to saving extra weights for new tasks and how to address this issue
has remained an open problem in task incremental learning. In this paper, we
introduce a novel Neural Weight Search technique that designs a fixed search
space where the optimal combinations of frozen weights can be searched to build
new models for novel tasks in an end-to-end manner, resulting in scalable and
controllable memory growth. Extensive experiments on two benchmarks, i.e.,
Split-CIFAR-100 and CUB-to-Sketches, show our method achieves state-of-the-art
performance with respect to both average inference accuracy and total memory
cost.
Related papers
- Negotiated Representations to Prevent Forgetting in Machine Learning
Applications [0.0]
Catastrophic forgetting is a significant challenge in the field of machine learning.
We propose a novel method for preventing catastrophic forgetting in machine learning applications.
arXiv Detail & Related papers (2023-11-30T22:43:50Z) - Efficient Rehearsal Free Zero Forgetting Continual Learning using
Adaptive Weight Modulation [3.6683171094134805]
Continual learning involves acquiring knowledge of multiple tasks over an extended period.
Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks.
Our approach attempts to maximize the performance of the new task, while ensuring zero forgetting.
arXiv Detail & Related papers (2023-11-26T12:36:05Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Dense Network Expansion for Class Incremental Learning [61.00081795200547]
State-of-the-art approaches use a dynamic architecture based on network expansion (NE), in which a task expert is added per task.
A new NE method, dense network expansion (DNE), is proposed to achieve a better trade-off between accuracy and model complexity.
It outperforms the previous SOTA methods by a margin of 4% in terms of accuracy, with similar or even smaller model scale.
arXiv Detail & Related papers (2023-03-22T16:42:26Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - GROWN: GRow Only When Necessary for Continual Learning [39.56829374809613]
Catastrophic forgetting is a notorious issue in deep learning, referring to the fact that Deep Neural Networks (DNN) could forget the knowledge about earlier tasks when learning new tasks.
To address this issue, continual learning has been developed to learn new tasks sequentially and perform knowledge transfer from the old tasks to the new ones without forgetting.
GROWN is a novel end-to-end continual learning framework to dynamically grow the model only when necessary.
arXiv Detail & Related papers (2021-10-03T02:31:04Z) - Multi-Task Learning with Sequence-Conditioned Transporter Networks [67.57293592529517]
We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
arXiv Detail & Related papers (2021-09-15T21:19:11Z) - Continual Learning via Bit-Level Information Preserving [88.32450740325005]
We study the continual learning process through the lens of information theory.
We propose Bit-Level Information Preserving (BLIP) that preserves the information gain on model parameters.
BLIP achieves close to zero forgetting while only requiring constant memory overheads throughout continual learning.
arXiv Detail & Related papers (2021-05-10T15:09:01Z) - Rectification-based Knowledge Retention for Continual Learning [49.1447478254131]
Deep learning models suffer from catastrophic forgetting when trained in an incremental learning setting.
We propose a novel approach to address the task incremental learning problem, which involves training a model on new tasks that arrive in an incremental manner.
Our approach can be used in both the zero-shot and non zero-shot task incremental learning settings.
arXiv Detail & Related papers (2021-03-30T18:11:30Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - SpaceNet: Make Free Space For Continual Learning [15.914199054779438]
We propose a novel architectural-based method referred as SpaceNet for class incremental learning scenario.
SpaceNet trains sparse deep neural networks from scratch in an adaptive way that compresses the sparse connections of each task in a compact number of neurons.
Experimental results show the robustness of our proposed method against catastrophic forgetting old tasks and the efficiency of SpaceNet in utilizing the available capacity of the model.
arXiv Detail & Related papers (2020-07-15T11:21:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.