Multi-Task Learning with Sequence-Conditioned Transporter Networks
- URL: http://arxiv.org/abs/2109.07578v1
- Date: Wed, 15 Sep 2021 21:19:11 GMT
- Title: Multi-Task Learning with Sequence-Conditioned Transporter Networks
- Authors: Michael H. Lim, Andy Zeng, Brian Ichter, Maryam Bandari, Erwin
Coumans, Claire Tomlin, Stefan Schaal, Aleksandra Faust
- Abstract summary: We aim to solve multi-task learning through the lens of sequence-conditioning and weighted sampling.
We propose a new suite of benchmark aimed at compositional tasks, MultiRavens, which allows defining custom task combinations.
Second, we propose a vision-based end-to-end system architecture, Sequence-Conditioned Transporter Networks, which augments Goal-Conditioned Transporter Networks with sequence-conditioning and weighted sampling.
- Score: 67.57293592529517
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enabling robots to solve multiple manipulation tasks has a wide range of
industrial applications. While learning-based approaches enjoy flexibility and
generalizability, scaling these approaches to solve such compositional tasks
remains a challenge. In this work, we aim to solve multi-task learning through
the lens of sequence-conditioning and weighted sampling. First, we propose a
new suite of benchmark specifically aimed at compositional tasks, MultiRavens,
which allows defining custom task combinations through task modules that are
inspired by industrial tasks and exemplify the difficulties in vision-based
learning and planning methods. Second, we propose a vision-based end-to-end
system architecture, Sequence-Conditioned Transporter Networks, which augments
Goal-Conditioned Transporter Networks with sequence-conditioning and weighted
sampling and can efficiently learn to solve multi-task long horizon problems.
Our analysis suggests that not only the new framework significantly improves
pick-and-place performance on novel 10 multi-task benchmark problems, but also
the multi-task learning with weighted sampling can vastly improve learning and
agent performances on individual tasks.
Related papers
- Dynamic Transformer Architecture for Continual Learning of Multimodal
Tasks [27.59758964060561]
Transformer neural networks are increasingly replacing prior architectures in a wide range of applications in different data modalities.
Continual learning (CL) emerges as a solution by facilitating the transfer of knowledge across tasks that arrive sequentially for an autonomously learning agent.
We propose a transformer-based CL framework focusing on learning tasks that involve both vision and language.
arXiv Detail & Related papers (2024-01-27T03:03:30Z) - Fast Inference and Transfer of Compositional Task Structures for
Few-shot Task Generalization [101.72755769194677]
We formulate it as a few-shot reinforcement learning problem where a task is characterized by a subtask graph.
Our multi-task subtask graph inferencer (MTSGI) first infers the common high-level task structure in terms of the subtask graph from the training tasks.
Our experiment results on 2D grid-world and complex web navigation domains show that the proposed method can learn and leverage the common underlying structure of the tasks for faster adaptation to the unseen tasks.
arXiv Detail & Related papers (2022-05-25T10:44:25Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - Variational Multi-Task Learning with Gumbel-Softmax Priors [105.22406384964144]
Multi-task learning aims to explore task relatedness to improve individual tasks.
We propose variational multi-task learning (VMTL), a general probabilistic inference framework for learning multiple related tasks.
arXiv Detail & Related papers (2021-11-09T18:49:45Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are simultaneously learned by a shared model.
We give an overview of multi-task learning methods for deep neural networks, with the aim of summarizing both the well-established and most recent directions within the field.
arXiv Detail & Related papers (2020-09-10T19:31:04Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - Knowledge Distillation for Multi-task Learning [38.20005345733544]
Multi-task learning (MTL) is to learn one single model that performs multiple tasks for achieving good performance on all tasks and lower cost on computation.
Learning such a model requires to jointly optimize losses of a set of tasks with different difficulty levels, magnitudes, and characteristics.
We propose a knowledge distillation based method in this work to address the imbalance problem in multi-task learning.
arXiv Detail & Related papers (2020-07-14T08:02:42Z) - Multi-Task Reinforcement Learning with Soft Modularization [25.724764855681137]
Multi-task learning is a very challenging problem in reinforcement learning.
We introduce an explicit modularization technique on policy representation to alleviate this optimization issue.
We show our method improves both sample efficiency and performance over strong baselines by a large margin.
arXiv Detail & Related papers (2020-03-30T17:47:04Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
Multi-task learning has emerged as a promising approach for sharing structure across multiple tasks.
The reasons why multi-task learning is so challenging compared to single-task learning are not fully understood.
We propose a form of gradient surgery that projects a task's gradient onto the normal plane of the gradient of any other task that has a conflicting gradient.
arXiv Detail & Related papers (2020-01-19T06:33:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.