Competency-Aware Neural Machine Translation: Can Machine Translation
Know its Own Translation Quality?
- URL: http://arxiv.org/abs/2211.13865v1
- Date: Fri, 25 Nov 2022 02:39:41 GMT
- Title: Competency-Aware Neural Machine Translation: Can Machine Translation
Know its Own Translation Quality?
- Authors: Pei Zhang, Baosong Yang, Haoran Wei, Dayiheng Liu, Kai Fan, Luo Si and
Jun Xie
- Abstract summary: Neural machine translation (NMT) is often criticized for failures that happen without awareness.
We propose a novel competency-aware NMT by extending conventional NMT with a self-estimator.
We show that the proposed method delivers outstanding performance on quality estimation.
- Score: 61.866103154161884
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural machine translation (NMT) is often criticized for failures that happen
without awareness. The lack of competency awareness makes NMT untrustworthy.
This is in sharp contrast to human translators who give feedback or conduct
further investigations whenever they are in doubt about predictions. To fill
this gap, we propose a novel competency-aware NMT by extending conventional NMT
with a self-estimator, offering abilities to translate a source sentence and
estimate its competency. The self-estimator encodes the information of the
decoding procedure and then examines whether it can reconstruct the original
semantics of the source sentence. Experimental results on four translation
tasks demonstrate that the proposed method not only carries out translation
tasks intact but also delivers outstanding performance on quality estimation.
Without depending on any reference or annotated data typically required by
state-of-the-art metric and quality estimation methods, our model yields an
even higher correlation with human quality judgments than a variety of
aforementioned methods, such as BLEURT, COMET, and BERTScore. Quantitative and
qualitative analyses show better robustness of competency awareness in our
model.
Related papers
- Understanding and Addressing the Under-Translation Problem from the Perspective of Decoding Objective [72.83966378613238]
Under-translation and over-translation remain two challenging problems in state-of-the-art Neural Machine Translation (NMT) systems.
We conduct an in-depth analysis on the underlying cause of under-translation in NMT, providing an explanation from the perspective of decoding objective.
We propose employing the confidence of predicting End Of Sentence (EOS) as a detector for under-translation, and strengthening the confidence-based penalty to penalize candidates with a high risk of under-translation.
arXiv Detail & Related papers (2024-05-29T09:25:49Z) - Iterative Translation Refinement with Large Language Models [25.90607157524168]
We propose iteratively prompting a large language model to self-correct a translation.
We also discuss the challenges in evaluation and relation to human performance and translationese.
arXiv Detail & Related papers (2023-06-06T16:51:03Z) - Rethink about the Word-level Quality Estimation for Machine Translation
from Human Judgement [57.72846454929923]
We create a benchmark dataset, emphHJQE, where the expert translators directly annotate poorly translated words.
We propose two tag correcting strategies, namely tag refinement strategy and tree-based annotation strategy, to make the TER-based artificial QE corpus closer to emphHJQE.
The results show our proposed dataset is more consistent with human judgement and also confirm the effectiveness of the proposed tag correcting strategies.
arXiv Detail & Related papers (2022-09-13T02:37:12Z) - Understanding and Mitigating the Uncertainty in Zero-Shot Translation [92.25357943169601]
We aim to understand and alleviate the off-target issues from the perspective of uncertainty in zero-shot translation.
We propose two lightweight and complementary approaches to denoise the training data for model training.
Our approaches significantly improve the performance of zero-shot translation over strong MNMT baselines.
arXiv Detail & Related papers (2022-05-20T10:29:46Z) - A Bayesian approach to translators' reliability assessment [0.0]
We consider the Translation Quality Assessment process as a complex process, considering it from the physics of complex systems point of view.
We build two Bayesian models that parameterise the features involved in the TQA process, namely the translation difficulty, the characteristics of the translators involved in producing the translation and assessing its quality.
We show that reviewers reliability cannot be taken for granted even if they are expert translators.
arXiv Detail & Related papers (2022-03-14T14:29:45Z) - HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using
Professional Post-Editing Towards More Effective MT Evaluation [0.0]
In this work, we introduce HOPE, a task-oriented and human-centric evaluation framework for machine translation output.
It contains only a limited number of commonly occurring error types, and use a scoring model with geometric progression of error penalty points (EPPs) reflecting error severity level to each translation unit.
The approach has several key advantages, such as ability to measure and compare less than perfect MT output from different systems, ability to indicate human perception of quality, immediate estimation of the labor effort required to bring MT output to premium quality, low-cost and faster application, as well as higher IRR.
arXiv Detail & Related papers (2021-12-27T18:47:43Z) - Measuring Uncertainty in Translation Quality Evaluation (TQE) [62.997667081978825]
This work carries out motivated research to correctly estimate the confidence intervals citeBrown_etal2001Interval depending on the sample size of the translated text.
The methodology we applied for this work is from Bernoulli Statistical Distribution Modelling (BSDM) and Monte Carlo Sampling Analysis (MCSA)
arXiv Detail & Related papers (2021-11-15T12:09:08Z) - BLEU, METEOR, BERTScore: Evaluation of Metrics Performance in Assessing
Critical Translation Errors in Sentiment-oriented Text [1.4213973379473654]
Machine Translation (MT) of the online content is commonly used to process posts written in several languages.
In this paper, we assess the ability of automatic quality metrics to detect critical machine translation errors.
We conclude that there is a need for fine-tuning of automatic metrics to make them more robust in detecting sentiment critical errors.
arXiv Detail & Related papers (2021-09-29T07:51:17Z) - Uncertainty-Aware Machine Translation Evaluation [0.716879432974126]
We introduce uncertainty-aware MT evaluation and analyze the trustworthiness of the predicted quality.
We compare the performance of our uncertainty-aware MT evaluation methods across multiple language pairs from the QT21 dataset and the WMT20 metrics task.
arXiv Detail & Related papers (2021-09-13T22:46:03Z) - ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback [70.5469946314539]
ChrEnTranslate is an online machine translation demonstration system for translation between English and an endangered language Cherokee.
It supports both statistical and neural translation models as well as provides quality estimation to inform users of reliability.
arXiv Detail & Related papers (2021-07-30T17:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.