ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback
- URL: http://arxiv.org/abs/2107.14800v2
- Date: Mon, 2 Aug 2021 16:27:02 GMT
- Title: ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback
- Authors: Shiyue Zhang, Benjamin Frey, Mohit Bansal
- Abstract summary: ChrEnTranslate is an online machine translation demonstration system for translation between English and an endangered language Cherokee.
It supports both statistical and neural translation models as well as provides quality estimation to inform users of reliability.
- Score: 70.5469946314539
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce ChrEnTranslate, an online machine translation demonstration
system for translation between English and an endangered language Cherokee. It
supports both statistical and neural translation models as well as provides
quality estimation to inform users of reliability, two user feedback interfaces
for experts and common users respectively, example inputs to collect human
translations for monolingual data, word alignment visualization, and relevant
terms from the Cherokee-English dictionary. The quantitative evaluation
demonstrates that our backbone translation models achieve state-of-the-art
translation performance and our quality estimation well correlates with both
BLEU and human judgment. By analyzing 216 pieces of expert feedback, we find
that NMT is preferable because it copies less than SMT, and, in general,
current models can translate fragments of the source sentence but make major
mistakes. When we add these 216 expert-corrected parallel texts back into the
training set and retrain models, equal or slightly better performance is
observed, which indicates the potential of human-in-the-loop learning. Our
online demo is at https://chren.cs.unc.edu/ , our code is open-sourced at
https://github.com/ZhangShiyue/ChrEnTranslate , and our data is available at
https://github.com/ZhangShiyue/ChrEn
Related papers
- Towards Zero-Shot Multimodal Machine Translation [64.9141931372384]
We propose a method to bypass the need for fully supervised data to train multimodal machine translation systems.
Our method, called ZeroMMT, consists in adapting a strong text-only machine translation (MT) model by training it on a mixture of two objectives.
To prove that our method generalizes to languages with no fully supervised training data available, we extend the CoMMuTE evaluation dataset to three new languages: Arabic, Russian and Chinese.
arXiv Detail & Related papers (2024-07-18T15:20:31Z) - Improving Language Models Trained on Translated Data with Continual Pre-Training and Dictionary Learning Analysis [3.16714407449467]
We investigate the role of translation and synthetic data in training language models.
We translate TinyStories, a dataset of 2.2M short stories for 3-4 year old children, from English to Arabic using the open NLLB-3B MT model.
To rectify these issues, we pre-train the models with a small dataset of synthesized high-quality Arabic stories.
arXiv Detail & Related papers (2024-05-23T07:53:04Z) - Advancing Translation Preference Modeling with RLHF: A Step Towards
Cost-Effective Solution [57.42593422091653]
We explore leveraging reinforcement learning with human feedback to improve translation quality.
A reward model with strong language capabilities can more sensitively learn the subtle differences in translation quality.
arXiv Detail & Related papers (2024-02-18T09:51:49Z) - An approach for mistranslation removal from popular dataset for Indic MT
Task [5.4755933832880865]
We propose an algorithm to remove mistranslations from the training corpus and evaluate its performance and efficiency.
Two Indic languages (ILs), namely, Hindi (HIN) and Odia (ODI) are chosen for the experiment.
The quality of the translations in the experiment is evaluated using standard metrics such as BLEU, METEOR, and RIBES.
arXiv Detail & Related papers (2024-01-12T06:37:19Z) - Bridging the Data Gap between Training and Inference for Unsupervised
Neural Machine Translation [49.916963624249355]
A UNMT model is trained on the pseudo parallel data with translated source, and natural source sentences in inference.
The source discrepancy between training and inference hinders the translation performance of UNMT models.
We propose an online self-training approach, which simultaneously uses the pseudo parallel data natural source, translated target to mimic the inference scenario.
arXiv Detail & Related papers (2022-03-16T04:50:27Z) - BitextEdit: Automatic Bitext Editing for Improved Low-Resource Machine
Translation [53.55009917938002]
We propose to refine the mined bitexts via automatic editing.
Experiments demonstrate that our approach successfully improves the quality of CCMatrix mined bitext for 5 low-resource language-pairs and 10 translation directions by up to 8 BLEU points.
arXiv Detail & Related papers (2021-11-12T16:00:39Z) - Detecting over/under-translation errors for determining adequacy in
human translations [0.0]
We present a novel approach to detecting over and under translations (OT/UT) as part of adequacy error checks in translation evaluation.
We do not restrict ourselves to machine translation (MT) outputs and specifically target applications with human generated translation pipeline.
The goal of our system is to identify OT/UT errors from human translated video subtitles with high error recall.
arXiv Detail & Related papers (2021-04-01T06:06:36Z) - Neural Machine Translation for Low-Resourced Indian Languages [4.726777092009554]
Machine translation is an effective approach to convert text to a different language without any human involvement.
In this paper, we have applied NMT on two of the most morphological rich Indian languages, i.e. English-Tamil and English-Malayalam.
We proposed a novel NMT model using Multihead self-attention along with pre-trained Byte-Pair-Encoded (BPE) and MultiBPE embeddings to develop an efficient translation system.
arXiv Detail & Related papers (2020-04-19T17:29:34Z) - Learning Contextualized Sentence Representations for Document-Level
Neural Machine Translation [59.191079800436114]
Document-level machine translation incorporates inter-sentential dependencies into the translation of a source sentence.
We propose a new framework to model cross-sentence dependencies by training neural machine translation (NMT) to predict both the target translation and surrounding sentences of a source sentence.
arXiv Detail & Related papers (2020-03-30T03:38:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.