FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations
- URL: http://arxiv.org/abs/2211.14309v3
- Date: Fri, 17 May 2024 14:57:40 GMT
- Title: FutureHuman3D: Forecasting Complex Long-Term 3D Human Behavior from Video Observations
- Authors: Christian Diller, Thomas Funkhouser, Angela Dai,
- Abstract summary: We present a generative approach to forecast long-term future human behavior in 3D, requiring only weak supervision from readily available 2D human action data.
We jointly predict high-level coarse action labels together with their low-level fine-grained realizations as characteristic 3D human poses.
Our experiments demonstrate the complementary nature of joint action and 3D pose prediction.
- Score: 26.693664045454526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a generative approach to forecast long-term future human behavior in 3D, requiring only weak supervision from readily available 2D human action data. This is a fundamental task enabling many downstream applications. The required ground-truth data is hard to capture in 3D (mocap suits, expensive setups) but easy to acquire in 2D (simple RGB cameras). Thus, we design our method to only require 2D RGB data at inference time while being able to generate 3D human motion sequences. We use a differentiable 2D projection scheme in an autoregressive manner for weak supervision, and an adversarial loss for 3D regularization. Our method predicts long and complex human behavior sequences (e.g., cooking, assembly) consisting of multiple sub-actions. We tackle this in a semantically hierarchical manner, jointly predicting high-level coarse action labels together with their low-level fine-grained realizations as characteristic 3D human poses. We observe that these two action representations are coupled in nature, and joint prediction benefits both action and pose forecasting. Our experiments demonstrate the complementary nature of joint action and 3D pose prediction: our joint approach outperforms each task treated individually, enables robust longer-term sequence prediction, and improves over alternative approaches to forecast actions and characteristic 3D poses.
Related papers
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotion is a generic Transformer-based model that exploits diverse and numerous visual cues to predict human behavior.
Our approach is validated on multiple datasets, including JTA, JRDB, Pedestrians and Cyclists in Road Traffic, and ETH-UCY.
arXiv Detail & Related papers (2023-12-26T18:56:49Z) - A generic diffusion-based approach for 3D human pose prediction in the
wild [68.00961210467479]
3D human pose forecasting, i.e., predicting a sequence of future human 3D poses given a sequence of past observed ones, is a challenging-temporal task.
We provide a unified formulation in which incomplete elements (no matter in the prediction or observation) are treated as noise and propose a conditional diffusion model that denoises them and forecasts plausible poses.
We investigate our findings on four standard datasets and obtain significant improvements over the state-of-the-art.
arXiv Detail & Related papers (2022-10-11T17:59:54Z) - Occluded Human Body Capture with Self-Supervised Spatial-Temporal Motion
Prior [7.157324258813676]
We build the first 3D occluded motion dataset(OcMotion), which can be used for both training and testing.
A spatial-temporal layer is then designed to learn joint-level correlations.
Experimental results show that our method can generate accurate and coherent human motions from occluded videos with good generalization ability and runtime efficiency.
arXiv Detail & Related papers (2022-07-12T08:15:11Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - 3D Skeleton-based Human Motion Prediction with Manifold-Aware GAN [3.1313293632309827]
We propose a novel solution for 3D skeleton-based human motion prediction.
We build a manifold-aware Wasserstein generative adversarial model that captures the temporal and spatial dependencies of human motion.
Experiments have been conducted on CMU MoCap and Human 3.6M datasets.
arXiv Detail & Related papers (2022-03-01T20:49:13Z) - Multi-Scale Networks for 3D Human Pose Estimation with Inference Stage
Optimization [33.02708860641971]
Estimating 3D human poses from a monocular video is still a challenging task.
Many existing methods drop when the target person is cluded by other objects, or the motion is too fast/slow relative to the scale and speed of the training data.
We introduce atemporal-temporal network for robust 3D human pose estimation.
arXiv Detail & Related papers (2020-10-13T15:24:28Z) - Unsupervised Cross-Modal Alignment for Multi-Person 3D Pose Estimation [52.94078950641959]
We present a deployment friendly, fast bottom-up framework for multi-person 3D human pose estimation.
We adopt a novel neural representation of multi-person 3D pose which unifies the position of person instances with their corresponding 3D pose representation.
We propose a practical deployment paradigm where paired 2D or 3D pose annotations are unavailable.
arXiv Detail & Related papers (2020-08-04T07:54:25Z) - Cascaded deep monocular 3D human pose estimation with evolutionary
training data [76.3478675752847]
Deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation.
This paper proposes a novel data augmentation method that is scalable for massive amount of training data.
Our method synthesizes unseen 3D human skeletons based on a hierarchical human representation and synthesizings inspired by prior knowledge.
arXiv Detail & Related papers (2020-06-14T03:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.