Grover's Quantum Search Algorithm of Causal Multiloop Feynman Integrals
- URL: http://arxiv.org/abs/2211.14359v1
- Date: Fri, 25 Nov 2022 19:40:51 GMT
- Title: Grover's Quantum Search Algorithm of Causal Multiloop Feynman Integrals
- Authors: Andr\'es E. Renter\'ia-Olivo
- Abstract summary: A proof-of-concept application of a quantum algorithm to multiloop Feynman integrals in the Loop-Tree Duality (LTD) framework is applied.
A modification of Grover's quantum search algorithm is developed and the quantum algorithm is successfully implemented on IBM Quantum and QUTE simulators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A proof-of-concept application of a quantum algorithm to multiloop Feynman
integrals in the Loop-Tree Duality (LTD) framework is applied to a
representative four-loop topology. Bootstrapping causality in the LTD
formalism, is a suitable problem to address with quantum computers given the
straightforward possibility to encode the two on-shell states of a propagator
on the two states of a qubit. A modification of Grover's quantum search
algorithm is developed and the quantum algorithm is successfully implemented on
IBM Quantum and QUTE simulators.
Related papers
- Quantum computing topological invariants of two-dimensional quantum matter [0.0]
We present two quantum circuits for calculating Chern numbers of two-dimensional quantum matter on quantum computers.
First algorithm uses many qubits, and we analyze it using a tensor-network simulator of quantum circuits.
Second circuit uses fewer qubits, and we implement it experimentally on a quantum computer based on superconducting qubits.
arXiv Detail & Related papers (2024-04-09T06:22:50Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Algorithm for Querying Causality of Multiloop Scattering
Amplitudes [0.0]
The first application of a quantum algorithm to Feynman loop integrals is reviewed.
The two on-shell states of a Feynman propagator are naturally encoded in a qubit.
The problem to be addressed is the identification of the causal singular configurations of multiloop Feynman diagrams.
arXiv Detail & Related papers (2022-11-10T11:12:10Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - From Causal Representation of Multiloop Scattering Amplitudes to Quantum
Computing [0.0]
An overview of a quantum algorithm application for the identification of causal singular configurations of multiloop Feynman diagrams is presented.
The quantum algorithm is implemented in two different quantum simulators, the output is directly translated to causal thresholds needed for the causal representation in the loop-tree duality.
arXiv Detail & Related papers (2022-01-12T09:27:10Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum algorithm for Feynman loop integrals [0.0]
We present a novel benchmark application of a quantum algorithm to Feynman loop integrals.
The two on-shell states of a Feynman propagator are identified with the two states of a qubit.
A quantum algorithm is used to unfold the causal singular configurations of multiloop Feynman diagrams.
arXiv Detail & Related papers (2021-05-18T17:41:56Z) - Quantum circuit synthesis of Bell and GHZ states using projective
simulation in the NISQ era [0.0]
We studied the viability of using Projective Simulation, a reinforcement learning technique, to tackle the problem of quantum circuit synthesis for noise quantum computers with limited number of qubits.
Our simulations demonstrated that the agent had a good performance but its capacity for learning new circuits decreased as the number of qubits increased.
arXiv Detail & Related papers (2021-04-27T16:11:27Z) - QUANTIFY: A framework for resource analysis and design verification of
quantum circuits [69.43216268165402]
QUANTIFY is an open-source framework for the quantitative analysis of quantum circuits.
It is based on Google Cirq and is developed with Clifford+T circuits in mind.
For benchmarking purposes QUANTIFY includes quantum memory and quantum arithmetic circuits.
arXiv Detail & Related papers (2020-07-21T15:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.