論文の概要: Non-invasive Liver Fibrosis Screening on CT Images using Radiomics
- arxiv url: http://arxiv.org/abs/2211.14396v2
- Date: Mon, 26 Feb 2024 17:08:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-29 01:16:15.229794
- Title: Non-invasive Liver Fibrosis Screening on CT Images using Radiomics
- Title(参考訳): ct画像を用いた非侵襲的肝線維化スクリーニング
- Authors: Jay J. Yoo, Khashayar Namdar, Sean Carey, Sandra E. Fischer, Chris
McIntosh, Farzad Khalvati and Patrik Rogalla
- Abstract要約: 本研究の目的は,肝のCTで肝線維症を検出するための放射能機械学習モデルの開発と評価である。
肝線維症スクリーニングモデルの開発には,AUCの最高値と組み合わせ,選択された特徴を併用した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objectives: To develop and evaluate a radiomics machine learning model for
detecting liver fibrosis on CT of the liver.
Methods: For this retrospective, single-centre study, radiomic features were
extracted from Regions of Interest (ROIs) on CT images of patients who
underwent simultaneous liver biopsy and CT examinations. Combinations of
contrast, normalization, machine learning model, and feature selection method
were determined based on their mean test Area Under the Receiver Operating
Characteristic curve (AUC) on randomly placed ROIs. The combination and
selected features with the highest AUC were used to develop a final liver
fibrosis screening model.
Results: The study included 101 male and 68 female patients (mean age = 51.2
years $\pm$ 14.7 [SD]). When averaging the AUC across all combinations,
non-contrast enhanced (NC) CT (AUC, 0.6100; 95% CI: 0.5897, 0.6303)
outperformed contrast-enhanced CT (AUC, 0.5680; 95% CI: 0.5471, 0.5890). The
combination of hyperparameters and features that yielded the highest AUC was a
logistic regression model with inputs features of maximum, energy, kurtosis,
skewness, and small area high gray level emphasis extracted from non-contrast
enhanced NC CT normalized using Gamma correction with $\gamma$ = 1.5 (AUC,
0.7833; 95% CI: 0.7821, 0.7845), (sensitivity, 0.9091; 95% CI: 0.9091, 0.9091).
Conclusions: Radiomics-based machine learning models allow for the detection
of liver fibrosis with reasonable accuracy and high sensitivity on NC CT. Thus,
these models can be used to non-invasively screen for liver fibrosis,
contributing to earlier detection of the disease at a potentially curable
stage.
- Abstract(参考訳): 目的: 肝のCTで肝線維症を検出するための放射能機械学習モデルの開発と評価。
方法: 肝生検およびCT検査を同時施行した症例のCT画像から, 単心線撮影で興味領域(ROI)から放射線学的特徴を抽出した。
ランダムに配置されたroisの受信者動作特性曲線(auc)下の平均試験面積に基づいて,コントラスト,正規化,機械学習モデル,特徴選択法の組み合わせを決定した。
肝線維化スクリーニングモデルの開発には,高aucとの組合せと選択された特徴を用いた。
結果: 対象は男性101名,女性68名(平均年齢=51.2年$\pm$14.7[SD])であった。
非コントラスト強調ct(auc, 0.6100; 95% ci: 0.5897, 0.6303)はコントラスト強調ct(auc, 0.5680; 95% ci: 0.5471, 0.5890)よりも優れている。
ハイパーパラメータと最高のaucが得られる特徴の組み合わせはロジスティック回帰モデルで、最大、エネルギー、クルトシス、スキューネス、小領域の高グレーレベル強調をガンマ補正で正規化した非コントラスト強化 nc ct から抽出した高グレーレベル強調を、$\gamma$ 1.5 (auc, 0.7833; 95% ci: 0.7821, 0.7845), (感度 0.9091; 95% ci: 0.9091, 0.9091) で入力した。
結論: 放射能に基づく機械学習モデルにより、NCCTの精度と高い感度で肝線維症を検出できる。
したがって、これらのモデルは非侵襲的に肝線維症をスクリーニングするために使用することができ、早期に治療可能な段階における疾患の検出に寄与する。
関連論文リスト
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
心血管疾患(CVD)のリスクのある患者の早期発見は、効果的な予防ケア、医療負担の軽減、患者の生活の質の向上に不可欠である。
本研究は、網膜光コヒーレンス断層撮影(OCT)と眼底写真との併用による、将来の心疾患の特定の可能性を示すものである。
そこで我々は,MCVAE(Multi- Channel Variational Autoencoder)に基づく新たなバイナリ分類ネットワークを提案し,患者の眼底画像とOCT画像の潜伏埋め込みを学習し,個人を将来CVDを発症する可能性のあるものとそうでないものとの2つのグループに分類する。
論文 参考訳(メタデータ) (2024-10-18T12:37:51Z) - Improving Fairness of Automated Chest X-ray Diagnosis by Contrastive
Learning [19.948079693716075]
提案するAIモデルは、教師付きコントラスト学習を利用して、CXR診断におけるバイアスを最小限にする。
77,887個のCXR画像を用いたMIDRCデータセットと,112,120個のCXR画像を用いたNIH Chest X-rayデータセットの2つのデータセットについて評価を行った。
論文 参考訳(メタデータ) (2024-01-25T20:03:57Z) - Comparison of retinal regions-of-interest imaged by OCT for the
classification of intermediate AMD [3.0171643773711208]
269名の中間AMD患者と115名の健常者から15744名のBスキャンを行った。
各サブセットについて、畳み込みニューラルネットワーク(VGG16アーキテクチャに基づいて、ImageNetで事前トレーニングされた)をトレーニングし、テストした。
モデルの性能は, 受信動作特性(AUROC), 精度, 感度, 特異性に基づいて評価した。
論文 参考訳(メタデータ) (2023-05-04T13:48:55Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
視覚変換器(ViT)の胸部X線撮影(CXR)分類性能と注意ベース唾液の解釈可能性について検討する。
ViTは、CheXpert、Chest X-Ray 14、MIMIC CXR、VinBigDataの4つの公開データセットを用いて、肺疾患分類のために微調整された。
ViTsは最先端のCNNと比べてCXR分類AUCに匹敵するものであった。
論文 参考訳(メタデータ) (2023-03-03T12:05:41Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - Deep Learning for Segmentation-based Hepatic Steatosis Detection on Open
Data: A Multicenter International Validation Study [5.117364766785943]
この3段階のAIワークフローは、3D肝セグメンテーション、肝減衰測定、肝脂肪症検出からなる。
ディープラーニングセグメンテーションの平均係数は0.957。
普遍的な検出に採用されれば、このディープラーニングシステムは、早期に非侵襲的で非薬学的な予防的介入を可能にする可能性がある。
論文 参考訳(メタデータ) (2022-10-27T03:24:52Z) - A Flexible Three-Dimensional Hetero-phase Computed Tomography
Hepatocellular Carcinoma (HCC) Detection Algorithm for Generalizable and
Practical HCC Screening [18.78910829126741]
肝細胞癌 (HCC) は腹部CTで診断できる可能性がある。
我々は異相体積検出(HPVD)と呼ばれる柔軟な3次元深度アルゴリズムを開発した。
HPVDは、コントラストフェーズの入力の組み合わせと、臨床目的に応じて調整可能な感度を受け入れることができる。
論文 参考訳(メタデータ) (2021-08-17T08:14:29Z) - iPhantom: a framework for automated creation of individualized
computational phantoms and its application to CT organ dosimetry [58.943644554192936]
本研究の目的は、患者固有の幻覚やデジタル双眼鏡の自動作成のための新しいフレームワーク、iPhantomを開発し、検証することである。
この枠組みは、個々の患者のCT画像における放射線感受性臓器への放射線線量を評価するために応用される。
iPhantomは、アンカーオルガンのDice similarity Coefficients (DSC) >0.6の精度で全ての臓器の位置を正確に予測し、他のオルガンのDSCは0.3-0.9である。
論文 参考訳(メタデータ) (2020-08-20T01:50:49Z) - Automated Quantification of CT Patterns Associated with COVID-19 from
Chest CT [48.785596536318884]
提案法は,非造影胸部CTを入力として,病変,肺,葉を3次元に分割する。
この方法では、肺の重症度と葉の関与度を2つの組み合わせて測定し、COVID-19の異常度と高不透明度の存在度を定量化する。
このアルゴリズムの評価は、カナダ、ヨーロッパ、米国からの200人の参加者(感染者100人、健康管理100人)のCTで報告されている。
論文 参考訳(メタデータ) (2020-04-02T21:49:14Z) - Severity Assessment of Coronavirus Disease 2019 (COVID-19) Using
Quantitative Features from Chest CT Images [54.919022945740515]
本研究の目的は,胸部CT画像に基づく新型コロナウイルスの重症度自動評価(非重症度または重症度)を実現することである。
ランダム・フォレスト(RF)モデルは、量的特徴に基づいて重症度(非重症度または重症度)を評価するために訓練される。
新型コロナウイルスの重症度を反映する可能性のあるいくつかの定量的特徴が明らかになった。
論文 参考訳(メタデータ) (2020-03-26T15:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。