論文の概要: Supervised Pretraining for Molecular Force Fields and Properties
Prediction
- arxiv url: http://arxiv.org/abs/2211.14429v1
- Date: Wed, 23 Nov 2022 08:36:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 14:15:56.407910
- Title: Supervised Pretraining for Molecular Force Fields and Properties
Prediction
- Title(参考訳): 分子力場における事前学習と特性予測
- Authors: Xiang Gao, Weihao Gao, Wenzhi Xiao, Zhirui Wang, Chong Wang, Liang
Xiang
- Abstract要約: 本研究では, 原子電荷と3次元ジオメトリーを入力とし, 分子エネルギーをラベルとする8800万分子のデータセット上で, ニューラルネットワークを事前学習することを提案する。
実験により、スクラッチからのトレーニングと比較して、事前訓練されたモデルを微調整すると、7つの分子特性予測タスクと2つの力場タスクのパフォーマンスが大幅に向上することが示された。
- 参考スコア(独自算出の注目度): 16.86839767858162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning approaches have become popular for molecular modeling tasks,
including molecular force fields and properties prediction. Traditional
supervised learning methods suffer from scarcity of labeled data for particular
tasks, motivating the use of large-scale dataset for other relevant tasks. We
propose to pretrain neural networks on a dataset of 86 millions of molecules
with atom charges and 3D geometries as inputs and molecular energies as labels.
Experiments show that, compared to training from scratch, fine-tuning the
pretrained model can significantly improve the performance for seven molecular
property prediction tasks and two force field tasks. We also demonstrate that
the learned representations from the pretrained model contain adequate
information about molecular structures, by showing that linear probing of the
representations can predict many molecular information including atom types,
interatomic distances, class of molecular scaffolds, and existence of molecular
fragments. Our results show that supervised pretraining is a promising research
direction in molecular modeling
- Abstract(参考訳): 機械学習のアプローチは、分子力場や特性予測などの分子モデリングタスクで広く使われている。
従来の教師付き学習手法は、特定のタスクに対するラベル付きデータの不足に悩まされており、他のタスクに対する大規模データセットの使用を動機付けている。
我々は、原子電荷と3dジオメトリを入力とし、分子エネルギーをラベルとして8500万分子のデータセット上でニューラルネットワークを事前学習することを提案する。
実験により、スクラッチからのトレーニングと比較して、事前学習されたモデルの微調整は、7つの分子特性予測タスクと2つの力場タスクのパフォーマンスを大幅に改善できることが示されている。
また, 事前学習モデルから得られた表現は, 分子構造に関する十分な情報を含んでおり, 原子タイプ, 原子間距離, 分子足場の種類, 分子断片の存在など, 分子情報の線形探索が多くの分子情報を予測可能であることを示す。
分子モデルにおける教師付き事前学習は有望な研究方向であることを示す。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Unraveling Key Elements Underlying Molecular Property Prediction: A
Systematic Study [27.56700461408765]
分子特性予測の根底にある重要な要素はほとんど未発見のままである。
我々は,MoreculeNetデータセット上の様々な表現を用いて,代表モデルの広範囲な評価を行う。
合計で62,820モデル、固定表現の50,220モデル、SMILES配列の4,200モデル、分子グラフの8,400モデルを含む訓練を行った。
論文 参考訳(メタデータ) (2022-09-26T14:07:59Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular
Property Prediction [13.55018269009361]
我々は、分子グラフ表現学習のための新しい自己教師付き学習フレームワーク、KPGT(Knowledge-guided Pre-training of Graph Transformer)を紹介する。
KPGTは、いくつかの分子特性予測タスクにおける最先端の手法よりも優れた性能を提供することができる。
論文 参考訳(メタデータ) (2022-06-02T08:22:14Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
本稿では,MoLFormerと呼ばれる効率的なトランスフォーマーエンコーダモデルのトレーニングにより得られた分子埋め込みについて述べる。
実験の結果,グラフベースおよび指紋ベースによる教師付き学習ベースラインと比較して,学習された分子表現が競合的に機能することが確認された。
論文 参考訳(メタデータ) (2021-06-17T14:33:55Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
分子特性予測の新しいモデルであるMeta-MGNNを提案する。
ラベルのない分子情報を利用するため、Meta-MGNNはさらに分子構造、属性ベースの自己監視モジュール、および自己注意のタスクウェイトを組み込む。
2つの公開マルチプロパティデータセットに関する広範な実験は、Meta-MGNNがさまざまな最先端のメソッドを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-02-16T01:55:34Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
計算モデルや分子表現にまたがる包括的な機械学習ツール群であるMoleculeKitを開発した。
これらの表現に基づいて構築されたMoeculeKitには、ディープラーニングと、グラフとシーケンスデータのための従来の機械学習方法の両方が含まれている。
オンラインおよびオフラインの抗生物質発見と分子特性予測のタスクの結果から、MoneculeKitは以前の方法よりも一貫した改善を実現していることがわかる。
論文 参考訳(メタデータ) (2020-12-02T02:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。