BeGin: Extensive Benchmark Scenarios and An Easy-to-use Framework for Graph Continual Learning
- URL: http://arxiv.org/abs/2211.14568v5
- Date: Wed, 30 Oct 2024 06:37:32 GMT
- Title: BeGin: Extensive Benchmark Scenarios and An Easy-to-use Framework for Graph Continual Learning
- Authors: Jihoon Ko, Shinhwan Kang, Taehyung Kwon, Heechan Moon, Kijung Shin,
- Abstract summary: Continual Learning (CL) is the process of learning ceaselessly a sequence of tasks.
graph data (graph CL) are relatively underexplored because of lack of standard experimental settings.
We develop BeGin, an easy and fool-proof framework for graph CL.
- Score: 18.32208249344985
- License:
- Abstract: Continual Learning (CL) is the process of learning ceaselessly a sequence of tasks. Most existing CL methods deal with independent data (e.g., images and text) for which many benchmark frameworks and results under standard experimental settings are available. Compared to them, however, CL methods for graph data (graph CL) are relatively underexplored because of (a) the lack of standard experimental settings, especially regarding how to deal with the dependency between instances, (b) the lack of benchmark datasets and scenarios, and (c) high complexity in implementation and evaluation due to the dependency. In this paper, regarding (a) we define four standard incremental settings (task-, class-, domain-, and time-incremental) for node-, link-, and graph-level problems, extending the previously explored scope. Regarding (b), we provide 35 benchmark scenarios based on 24 real-world graphs. Regarding (c), we develop BeGin, an easy and fool-proof framework for graph CL. BeGin is easily extended since it is modularized with reusable modules for data processing, algorithm design, and evaluation. Especially, the evaluation module is completely separated from user code to eliminate potential mistakes. Regarding benchmark results, we cover 3x more combinations of incremental settings and levels of problems than the latest benchmark. All assets for the benchmark framework are publicly available at https://github.com/ShinhwanKang/BeGin.
Related papers
- GLBench: A Comprehensive Benchmark for Graph with Large Language Models [41.89444363336435]
We introduce GLBench, the first comprehensive benchmark for evaluating GraphLLM methods in both supervised and zero-shot scenarios.
GLBench provides a fair and thorough evaluation of different categories of GraphLLM methods, along with traditional baselines such as graph neural networks.
arXiv Detail & Related papers (2024-07-10T08:20:47Z) - GC-Bench: An Open and Unified Benchmark for Graph Condensation [54.70801435138878]
We develop a comprehensive Graph Condensation Benchmark (GC-Bench) to analyze the performance of graph condensation.
GC-Bench systematically investigates the characteristics of graph condensation in terms of the following dimensions: effectiveness, transferability, and complexity.
We have developed an easy-to-use library for training and evaluating different GC methods to facilitate reproducible research.
arXiv Detail & Related papers (2024-06-30T07:47:34Z) - AGALE: A Graph-Aware Continual Learning Evaluation Framework [7.892731722253387]
We develop a graph-aware evaluation (agale) framework that accommodates both single-labeled and multi-labeled nodes.
In particular, we define new incremental settings and devise algorithms tailored to datasets.
We theoretically analyze agale and provide new insights about the role of homophily in the performance of compared methods.
arXiv Detail & Related papers (2024-06-03T11:50:47Z) - How to Prune Your Language Model: Recovering Accuracy on the "Sparsity
May Cry'' Benchmark [60.72725673114168]
We revisit the question of accurate BERT-pruning during fine-tuning on downstream datasets.
We propose a set of general guidelines for successful pruning, even on the challenging SMC benchmark.
arXiv Detail & Related papers (2023-12-21T03:11:30Z) - CARL-G: Clustering-Accelerated Representation Learning on Graphs [18.763104937800215]
We propose a novel clustering-based framework for graph representation learning that uses a loss inspired by Cluster Validation Indices (CVIs)
CARL-G is adaptable to different clustering methods and CVIs, and we show that with the right choice of clustering method and CVI, CARL-G outperforms node classification baselines on 4/5 datasets with up to a 79x training speedup compared to the best-performing baseline.
arXiv Detail & Related papers (2023-06-12T08:14:42Z) - Towards Practical Few-Shot Query Sets: Transductive Minimum Description
Length Inference [0.0]
We introduce a PrimAl Dual Minimum Description LEngth (PADDLE) formulation, which balances data-fitting accuracy and model complexity for a given few-shot task.
Our constrained MDL-like objective promotes competition among a large set of possible classes, preserving only effective classes that befit better the data of a few-shot task.
arXiv Detail & Related papers (2022-10-26T08:06:57Z) - Unifying Graph Contrastive Learning with Flexible Contextual Scopes [57.86762576319638]
We present a self-supervised learning method termed Unifying Graph Contrastive Learning with Flexible Contextual Scopes (UGCL for short)
Our algorithm builds flexible contextual representations with contextual scopes by controlling the power of an adjacency matrix.
Based on representations from both local and contextual scopes, distL optimises a very simple contrastive loss function for graph representation learning.
arXiv Detail & Related papers (2022-10-17T07:16:17Z) - The CLEAR Benchmark: Continual LEArning on Real-World Imagery [77.98377088698984]
Continual learning (CL) is widely regarded as crucial challenge for lifelong AI.
We introduce CLEAR, the first continual image classification benchmark dataset with a natural temporal evolution of visual concepts.
We find that a simple unsupervised pre-training step can already boost state-of-the-art CL algorithms.
arXiv Detail & Related papers (2022-01-17T09:09:09Z) - WRENCH: A Comprehensive Benchmark for Weak Supervision [66.82046201714766]
benchmark consists of 22 varied real-world datasets for classification and sequence tagging.
We use benchmark to conduct extensive comparisons over more than 100 method variants to demonstrate its efficacy as a benchmark platform.
arXiv Detail & Related papers (2021-09-23T13:47:16Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.