論文の概要: Dynamic Feature Pruning and Consolidation for Occluded Person
Re-Identification
- arxiv url: http://arxiv.org/abs/2211.14742v1
- Date: Sun, 27 Nov 2022 06:18:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 18:23:26.502562
- Title: Dynamic Feature Pruning and Consolidation for Occluded Person
Re-Identification
- Title(参考訳): 人物再同定のための動的特徴抽出と統合
- Authors: Yuteng Ye, Hang Zhou, Junqing Yu, Qiang Hu, Wei Yang
- Abstract要約: 咬合者の再同定(ReID)は,咬合者からの汚染が原因で難しい問題である。
本研究では, 明示的な人的構造解析を回避するために, FPC(Feature pruning and Consolidation)フレームワークを提案する。
実験により,提案手法が閉鎖的,部分的,全体的Re-IDデータセットに与える影響を実証した。
- 参考スコア(独自算出の注目度): 17.75728645195298
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Occluded person re-identification (ReID) is a challenging problem due to
contamination from occluders, and existing approaches address the issue with
prior knowledge cues, eg human body key points, semantic segmentations and etc,
which easily fails in the presents of heavy occlusion and other humans as
occluders. In this paper, we propose a feature pruning and consolidation (FPC)
framework to circumvent explicit human structure parse, which mainly consists
of a sparse encoder, a global and local feature ranking module, and a feature
consolidation decoder. Specifically, the sparse encoder drops less important
image tokens (mostly related to background noise and occluders) solely
according to correlation within the class token attention instead of relying on
prior human shape information. Subsequently, the ranking stage relies on the
preserved tokens produced by the sparse encoder to identify k-nearest neighbors
from a pre-trained gallery memory by measuring the image and patch-level
combined similarity. Finally, we use the feature consolidation module to
compensate pruned features using identified neighbors for recovering essential
information while disregarding disturbance from noise and occlusion.
Experimental results demonstrate the effectiveness of our proposed framework on
occluded, partial and holistic Re-ID datasets. In particular, our method
outperforms state-of-the-art results by at least 8.6% mAP and 6.0% Rank-1
accuracy on the challenging Occluded-Duke dataset.
- Abstract(参考訳): occluded person re-idification (reid) はoccludersの汚染による困難な問題であり、既存のアプローチでは、ヘビーオクルージョンや他の人間をoccludersとして提示する際に容易に失敗する、人間の身体のキーポイント、セマンティックセグメンテーションなど、事前知識の手がかりを扱う。
本稿では, スパースエンコーダ, グローバルおよびローカルな特徴ランキングモジュール, 機能強化デコーダから構成される, 明示的な人的構造解析を回避するために, FPC(Feature pruning and Consolidation)フレームワークを提案する。
具体的には、スパースエンコーダは、以前の人間の形状情報に頼るのではなく、クラストークンの注意の相関のみに従って、重要でない画像トークン(主に背景ノイズやオクルーダに関連する)をドロップする。
その後、ランキングステージはスパースエンコーダが生成した保存トークンに依存し、画像とパッチレベルの組み合わせ類似度を測定して、訓練済みのギャラリーメモリからk-アネレスト隣人を識別する。
最後に, 特徴統合モジュールを用いて, 同定された隣人を用いたプルーン特徴の補償を行い, 騒音や咬合の混乱を無視しながら本質情報を復元する。
実験の結果,提案フレームワークがオクルード,部分的および全体的re-idデータセット上で有効であることが示された。
特に本手法は,オクルードドドデュークデータセットにおいて,少なくとも8.6%の地図と6.0%のランク-1精度で最先端の結果を上回っている。
関連論文リスト
- DDRN:a Data Distribution Reconstruction Network for Occluded Person Re-Identification [5.7703191981015305]
本研究では,データ分布を利用した生成モデルを提案し,無関係な詳細をフィルタリングする。
Occluded-Dukeデータセットでは、62.4%(+1.1%)のmAPと71.3%(+0.6%)のランク1の精度を達成した。
論文 参考訳(メタデータ) (2024-10-09T06:52:05Z) - SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis [8.489318619991534]
深層学習は、精神疾患や個人の特徴に関連する静止状態機能型磁気共鳴イメージング(rsfMRI)のパターンを明らかにするのに役立つ。
しかし、深層学習の発見を解釈する問題は、fMRIによる分析よりも明らかではない。
スパーシフィケーションと自己超越に基づくこれらの課題を緩和するための簡単なアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-24T18:35:57Z) - UGMAE: A Unified Framework for Graph Masked Autoencoders [67.75493040186859]
グラフマスク付きオートエンコーダのための統一フレームワークであるUGMAEを提案する。
まず,ノードの特異性を考慮した適応型特徴マスク生成器を開発した。
次に,階層型構造再構成と特徴再構成を併用し,総合的なグラフ情報を取得する。
論文 参考訳(メタデータ) (2024-02-12T19:39:26Z) - Feature Completion Transformer for Occluded Person Re-identification [25.159974510754992]
咬合者の再同定(Re-ID)は,咬合者の破壊による課題である。
特徴空間に隠された部分の意味情報を暗黙的に補完する特徴補完変換器(FCFormer)を提案する。
FCFormerは優れたパフォーマンスを実現し、隠蔽されたデータセットに対してかなりのマージンで最先端の手法を上回ります。
論文 参考訳(メタデータ) (2023-03-03T01:12:57Z) - Learning Feature Recovery Transformer for Occluded Person
Re-identification [71.18476220969647]
本稿では,FRT(Feature Recovery Transformer)と呼ばれる2つの課題を同時に解決する手法を提案する。
特徴マッチング時のノイズの干渉を低減するため,両画像に現れる可視領域に着目し,類似性を計算するための可視グラフを開発した。
2つ目の課題は、グラフの類似性に基づいて、各クエリ画像に対して、ギャラリー内の$k$-nearestの隣人の特徴セットを利用して、完全な特徴を復元するリカバリトランスフォーマを提案することである。
論文 参考訳(メタデータ) (2023-01-05T02:36:16Z) - Neighbourhood-guided Feature Reconstruction for Occluded Person
Re-Identification [45.704612531562404]
本研究では,周辺情報をギャラリーのイメージセットでフル活用し,埋蔵部品の特徴表現の再構築を提案する。
大規模なOccluded-DukeMTMCベンチマークでは,64.2%のmAPと67.6%のランク1精度を達成した。
論文 参考訳(メタデータ) (2021-05-16T03:53:55Z) - Holistic Guidance for Occluded Person Re-Identification [7.662745552551165]
実世界のビデオ監視アプリケーションでは、人物の再識別(ReID)は、閉塞や検出エラーの影響に悩まされる。
個人識別ラベルにのみ依存するHG(Holistic Guidance)手法を提案する。
提案手法は, 包括的(非包括的)標本と, 包括的(非包括的)標本の包括的(包括的)な距離(DCD)分布を一致させることにより, この問題に対処する。
これに加えて、共同生成-識別的バックボーンは、デノナイジングオートエンコーダで訓練され、システムが制御される。
論文 参考訳(メタデータ) (2021-04-13T21:50:29Z) - Generative Partial Visual-Tactile Fused Object Clustering [81.17645983141773]
オブジェクトクラスタリングのためのGenerative Partial Visual-Tactile Fused(GPVTF)フレームワークを提案する。
条件付きクロスモーダルクラスタリング生成逆ネットワークを開発し、一方のモダリティ条件を他方のモダリティ上で合成する。
最後に、擬似ラベルに基づく2つのKL分割損失を用いて、対応するモダリティ固有エンコーダを更新する。
論文 参考訳(メタデータ) (2020-12-28T02:37:03Z) - Improving Face Recognition by Clustering Unlabeled Faces in the Wild [77.48677160252198]
極値理論に基づく新しいアイデンティティ分離法を提案する。
重なり合うラベルノイズによる問題を大幅に低減する。
制御された設定と実際の設定の両方の実験は、我々のメソッドの一貫性のある改善を示している。
論文 参考訳(メタデータ) (2020-07-14T12:26:50Z) - Peeking into occluded joints: A novel framework for crowd pose
estimation [88.56203133287865]
OPEC-NetはイメージガイドされたプログレッシブGCNモジュールで、推論の観点から見えない関節を推定する。
OCPoseは、隣接するインスタンス間の平均IoUに対して、最も複雑なOccluded Poseデータセットである。
論文 参考訳(メタデータ) (2020-03-23T19:32:40Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
本稿では,高次関係とトポロジ情報を識別的特徴とロバストなアライメントのために学習し,新しい枠組みを提案する。
我々のフレームワークはOccluded-Dukeデータセットで最先端の6.5%mAPスコアを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-18T12:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。