論文の概要: Cross-domain Few-shot Segmentation with Transductive Fine-tuning
- arxiv url: http://arxiv.org/abs/2211.14745v1
- Date: Sun, 27 Nov 2022 06:44:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 18:22:46.381460
- Title: Cross-domain Few-shot Segmentation with Transductive Fine-tuning
- Title(参考訳): トランスダクティブファインチューニングによるクロスドメインショット分割
- Authors: Yuhang Lu, Xinyi Wu, Zhenyao Wu, Song Wang
- Abstract要約: 本稿では,数ショットの条件下でのクエリ画像の集合に基づいて,ベースモデルをトランスダクティブに微調整することを提案する。
提案手法は,すべてのクロスドメインタスクにおいて,FSSモデルの性能を一貫して,かつ著しく向上させることができる。
- 参考スコア(独自算出の注目度): 29.81009103722184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot segmentation (FSS) expects models trained on base classes to work on
novel classes with the help of a few support images. However, when there exists
a domain gap between the base and novel classes, the state-of-the-art FSS
methods may even fail to segment simple objects. To improve their performance
on unseen domains, we propose to transductively fine-tune the base model on a
set of query images under the few-shot setting, where the core idea is to
implicitly guide the segmentation of query images using support labels.
Although different images are not directly comparable, their class-wise
prototypes are desired to be aligned in the feature space. By aligning query
and support prototypes with an uncertainty-aware contrastive loss, and using a
supervised cross-entropy loss and an unsupervised boundary loss as
regularizations, our method could generalize the base model to the target
domain without additional labels. We conduct extensive experiments under
various cross-domain settings of natural, remote sensing, and medical images.
The results show that our method could consistently and significantly improve
the performance of prototypical FSS models in all cross-domain tasks.
- Abstract(参考訳): Few-shot segmentation (FSS)は、ベースクラスでトレーニングされたモデルが、いくつかのサポートイメージの助けを借りて、新しいクラスで動作することを期待している。
しかし、ベースクラスと新しいクラスの間にドメインギャップがある場合、最先端のFSSメソッドは単純なオブジェクトをセグメントすることができない。
そこで本研究では,クエリイメージの集合に対して,サポートラベルを用いてクエリイメージのセグメンテーションを暗黙的にガイドする,いくつかのショット設定の下で,ベースモデルをトランスダクティブに微調整することを提案する。
異なる画像は直接比較されないが、クラス毎のプロトタイプは機能領域に整列することが望ましい。
クエリとサポートプロトタイプを不確実性を考慮したコントラスト損失と整合させ,教師付きクロスエントロピー損失と教師なし境界損失を正規化として用いることで,ベースモデルを追加ラベルなしで対象領域に一般化することができる。
我々は,自然,リモートセンシング,医用画像の様々なクロスドメイン環境下で広範な実験を行う。
その結果,全クロスドメインタスクにおいて,fssモデルの性能を一貫して大幅に向上させることができることがわかった。
関連論文リスト
- Cross-Domain Few-Shot Semantic Segmentation via Doubly Matching Transformation [26.788260801305974]
Cross-Domain Few-shot Semantic (CD-FSS)は、いくつかのラベル付きイメージで異なるドメインからクラスをセグメントできる一般化モデルのトレーニングを目的としている。
従来の研究は、CD-FSSに対処する際の特徴変換の有効性を証明してきた。
本稿では、この問題を解決するために、DMTNet(Doubly Matching Transformation-based Network)を提案する。
論文 参考訳(メタデータ) (2024-05-24T06:47:43Z) - Adapt Before Comparison: A New Perspective on Cross-Domain Few-Shot Segmentation [0.0]
クロスドメイン小ショットセグメンテーション (CD-FSS) が登場した。
テスト時間タスク適応がCD-FSSの成功の鍵であることを示す。
テスト時にラベル付きサンプル以外の画像は使用しないが,CD-FSSでは新たな最先端性能を実現している。
論文 参考訳(メタデータ) (2024-02-27T15:43:53Z) - Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
少ないショットセグメンテーションは、注釈付き画像のみを提供する新しいタスクに迅速に適応できるセグメンテーションモデルをトレーニングすることを目的としている。
本稿では,対象オブジェクトの相対的サイズに基づいて,サポートイメージを拡大するIDA戦略を提案する。
提案したIDAは,サポートセットの多様性を効果的に向上し,サポートイメージとクエリイメージ間の分散一貫性を促進する。
論文 参考訳(メタデータ) (2024-01-18T10:29:10Z) - TACIT: A Target-Agnostic Feature Disentanglement Framework for
Cross-Domain Text Classification [17.19214732926589]
クロスドメインテキスト分類は、ラベルの豊富なソースドメインからラベルの少ないターゲットドメインにモデルを転送することを目的としている。
本稿では,ロバストな特徴とアンロバストな特徴を適応的に分離する対象領域特徴のアンタングル化フレームワークであるTACITを提案する。
我々のフレームワークは、ソースドメインデータのみを活用しながら、最先端のベースラインに匹敵する結果を得る。
論文 参考訳(メタデータ) (2023-12-25T02:52:36Z) - Style Mixing and Patchwise Prototypical Matching for One-Shot
Unsupervised Domain Adaptive Semantic Segmentation [21.01132797297286]
ワンショットの教師なしドメイン適応では、セグメンタはトレーニング中にラベルなしのターゲットイメージを1つしか見ることができない。
このような計算負担を効果的に軽減できるOSUDA法を提案する。
提案手法は,ドメイン適応型セマンティックセグメンテーションのための2つの一般的なベンチマーク上で,最先端性能を実現する。
論文 参考訳(メタデータ) (2021-12-09T02:47:46Z) - DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic
Segmentation [97.74059510314554]
セグメンテーションのための教師なしドメイン適応(UDA)は、ラベル付きソースドメインで訓練されたセグメンテーションモデルをラベル付きターゲットドメインに適応させることを目的としている。
既存の手法では、大きなドメインギャップに悩まされながら、ドメイン不変の特徴を学習しようとする。
本稿では,新しいDual Soft-Paste (DSP)法を提案する。
論文 参考訳(メタデータ) (2021-07-20T16:22:40Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Towards Unsupervised Sketch-based Image Retrieval [126.77787336692802]
本稿では,教師なし表現学習とスケッチ写真領域アライメントを同時に行う新しいフレームワークを提案する。
このフレームワークは,新しい教師なし設定では優れた性能を達成し,ゼロショット設定では最先端以上の性能を発揮する。
論文 参考訳(メタデータ) (2021-05-18T02:38:22Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Semi-Supervised Domain Adaptation with Prototypical Alignment and
Consistency Learning [86.6929930921905]
本稿では,いくつかの対象サンプルがラベル付けされていれば,ドメインシフトに対処するのにどの程度役立つか検討する。
ランドマークの可能性を最大限に追求するために、ランドマークから各クラスのターゲットプロトタイプを計算するプロトタイプアライメント(PA)モジュールを組み込んでいます。
具体的には,ラベル付き画像に深刻な摂動を生じさせ,PAを非自明にし,モデル一般化性を促進する。
論文 参考訳(メタデータ) (2021-04-19T08:46:08Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。