Improved Quasi-Recurrent Neural Network for Hyperspectral Image
Denoising
- URL: http://arxiv.org/abs/2211.14811v2
- Date: Sun, 2 Apr 2023 10:32:00 GMT
- Title: Improved Quasi-Recurrent Neural Network for Hyperspectral Image
Denoising
- Authors: Zeqiang Lai, Ying Fu
- Abstract summary: We show that with a few simple modifications, the performance of QRNN3D could be substantially improved further.
We introduce an adaptive fusion module to replace its vanilla additive skip connection to better fuse the features of the encoder and decoder.
Experimental results on various noise settings demonstrate the effectiveness and superior performance of our method.
- Score: 9.723155514555765
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral image is unique and useful for its abundant spectral bands, but
it subsequently requires extra elaborated treatments of the spatial-spectral
correlation as well as the global correlation along the spectrum for building a
robust and powerful HSI restoration algorithm. By considering such HSI
characteristics, 3D Quasi-Recurrent Neural Network (QRNN3D) is one of the HSI
denoising networks that has been shown to achieve excellent performance and
flexibility. In this paper, we show that with a few simple modifications, the
performance of QRNN3D could be substantially improved further. Our
modifications are based on the finding that through QRNN3D is powerful for
modeling spectral correlation, it neglects the proper treatment between
features from different sources and its training strategy is suboptimal. We,
therefore, introduce an adaptive fusion module to replace its vanilla additive
skip connection to better fuse the features of the encoder and decoder. We
additionally identify several important techniques to further enhance the
performance, which includes removing batch normalization, use of extra
frequency loss, and learning rate warm-up. Experimental results on various
noise settings demonstrate the effectiveness and superior performance of our
method.
Related papers
- NeRF-DetS: Enhancing Multi-View 3D Object Detection with Sampling-adaptive Network of Continuous NeRF-based Representation [60.47114985993196]
NeRF-Det unifies the tasks of novel view arithmetic and 3D perception.
We introduce a novel 3D perception network structure, NeRF-DetS.
NeRF-DetS outperforms competitive NeRF-Det on the ScanNetV2 dataset.
arXiv Detail & Related papers (2024-04-22T06:59:03Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations [25.88881764546414]
VQ-NeRF is an efficient pipeline for enhancing implicit neural representations via vector quantization.
We present an innovative multi-scale NeRF sampling scheme that concurrently optimize the NeRF model at both compressed and original scales.
We incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions.
arXiv Detail & Related papers (2023-10-23T01:41:38Z) - Hyperspectral Image Denoising via Self-Modulating Convolutional Neural
Networks [15.700048595212051]
We introduce a self-modulating convolutional neural network which utilizes correlated spectral and spatial information.
At the core of the model lies a novel block, which allows the network to transform the features in an adaptive manner based on the adjacent spectral data.
Experimental analysis on both synthetic and real data shows that the proposed SM-CNN outperforms other state-of-the-art HSI denoising methods.
arXiv Detail & Related papers (2023-09-15T06:57:43Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Hybrid Spectral Denoising Transformer with Guided Attention [34.34075175179669]
We present a Hybrid Spectral Denoising Transformer (HSDT) for hyperspectral image denoising.
Our HSDT significantly outperforms the existing state-of-the-art methods while maintaining low computational overhead.
arXiv Detail & Related papers (2023-03-16T02:24:31Z) - HDNet: High-resolution Dual-domain Learning for Spectral Compressive
Imaging [138.04956118993934]
We propose a high-resolution dual-domain learning network (HDNet) for HSI reconstruction.
On the one hand, the proposed HR spatial-spectral attention module with its efficient feature fusion provides continuous and fine pixel-level features.
On the other hand, frequency domain learning (FDL) is introduced for HSI reconstruction to narrow the frequency domain discrepancy.
arXiv Detail & Related papers (2022-03-04T06:37:45Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - 3D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising [25.641742612227148]
3D convolution is utilized to extract structural-spectral correlation in an HS image.
alternating global directional structure is introduced to eliminate causal dependency.
experiments on HSI denoising demonstrate significant improvement over state-of-the-arts computation.
arXiv Detail & Related papers (2020-03-10T06:14:53Z) - Spatial-Spectral Residual Network for Hyperspectral Image
Super-Resolution [82.1739023587565]
We propose a novel spectral-spatial residual network for hyperspectral image super-resolution (SSRNet)
Our method can effectively explore spatial-spectral information by using 3D convolution instead of 2D convolution, which enables the network to better extract potential information.
In each unit, we employ spatial and temporal separable 3D convolution to extract spatial and spectral information, which not only reduces unaffordable memory usage and high computational cost, but also makes the network easier to train.
arXiv Detail & Related papers (2020-01-14T03:34:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.