SteppingNet: A Stepping Neural Network with Incremental Accuracy
Enhancement
- URL: http://arxiv.org/abs/2211.14926v1
- Date: Sun, 27 Nov 2022 20:20:33 GMT
- Title: SteppingNet: A Stepping Neural Network with Incremental Accuracy
Enhancement
- Authors: Wenhao Sun, Grace Li Zhang, Xunzhao Yin, Cheng Zhuo, Huaxi Gu, Bing
Li, Ulf Schlichtmann
- Abstract summary: Increasing number of multiply-and-accumulate (MAC) operations prevents their application in resource-constrained platforms.
We propose a design framework called SteppingNet to address these challenges.
We show SteppingNet provides an effective incremental accuracy improvement and its inference accuracy consistently outperforms state-of-the-art work.
- Score: 10.20763050412309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) have successfully been applied in many fields in
the past decades. However, the increasing number of multiply-and-accumulate
(MAC) operations in DNNs prevents their application in resource-constrained and
resource-varying platforms, e.g., mobile phones and autonomous vehicles. In
such platforms, neural networks need to provide acceptable results quickly and
the accuracy of the results should be able to be enhanced dynamically according
to the computational resources available in the computing system. To address
these challenges, we propose a design framework called SteppingNet. SteppingNet
constructs a series of subnets whose accuracy is incrementally enhanced as more
MAC operations become available. Therefore, this design allows a trade-off
between accuracy and latency. In addition, the larger subnets in SteppingNet
are built upon smaller subnets, so that the results of the latter can directly
be reused in the former without recomputation. This property allows SteppingNet
to decide on-the-fly whether to enhance the inference accuracy by executing
further MAC operations. Experimental results demonstrate that SteppingNet
provides an effective incremental accuracy improvement and its inference
accuracy consistently outperforms the state-of-the-art work under the same
limit of computational resources.
Related papers
- Enhancing Dropout-based Bayesian Neural Networks with Multi-Exit on FPGA [20.629635991749808]
This paper proposes an algorithm and hardware co-design framework that can generate field-programmable gate array (FPGA)-based accelerators for efficient BayesNNs.
At the algorithm level, we propose novel multi-exit dropout-based BayesNNs with reduced computational and memory overheads.
At the hardware level, this paper introduces a transformation framework that can generate FPGA-based accelerators for the proposed efficient BayesNNs.
arXiv Detail & Related papers (2024-06-20T17:08:42Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
Trends indicate that deeper and larger neural networks with an increasing number of parameters achieve higher accuracy than smaller neural networks.
We generalize structured pruning with algorithms for network augmentation, pruning, sub-network collapse and removal.
The resulting CNN executes efficiently on GPU hardware without computationally expensive sparse matrix operations.
arXiv Detail & Related papers (2023-08-28T14:19:13Z) - CorrectNet: Robustness Enhancement of Analog In-Memory Computing for
Neural Networks by Error Suppression and Compensation [4.570841222958966]
We propose a framework to enhance the robustness of neural networks under variations and noise.
We show that inference accuracy of neural networks can be recovered from as low as 1.69% under variations and noise.
arXiv Detail & Related papers (2022-11-27T19:13:33Z) - Fast Exploration of the Impact of Precision Reduction on Spiking Neural
Networks [63.614519238823206]
Spiking Neural Networks (SNNs) are a practical choice when the target hardware reaches the edge of computing.
We employ an Interval Arithmetic (IA) model to develop an exploration methodology that takes advantage of the capability of such a model to propagate the approximation error.
arXiv Detail & Related papers (2022-11-22T15:08:05Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Low-bit Shift Network for End-to-End Spoken Language Understanding [7.851607739211987]
We propose the use of power-of-two quantization, which quantizes continuous parameters into low-bit power-of-two values.
This reduces computational complexity by removing expensive multiplication operations and with the use of low-bit weights.
arXiv Detail & Related papers (2022-07-15T14:34:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Greedy Network Enlarging [53.319011626986004]
We propose a greedy network enlarging method based on the reallocation of computations.
With step-by-step modifying the computations on different stages, the enlarged network will be equipped with optimal allocation and utilization of MACs.
With application of our method on GhostNet, we achieve state-of-the-art 80.9% and 84.3% ImageNet top-1 accuracies.
arXiv Detail & Related papers (2021-07-31T08:36:30Z) - FADNet: A Fast and Accurate Network for Disparity Estimation [18.05392578461659]
We propose an efficient and accurate deep network for disparity estimation named FADNet.
It exploits efficient 2D based correlation layers with stacked blocks to preserve fast computation.
It contains multi-scale predictions so as to exploit a multi-scale weight scheduling training technique to improve the accuracy.
arXiv Detail & Related papers (2020-03-24T10:27:11Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.