論文の概要: STAGE: Span Tagging and Greedy Inference Scheme for Aspect Sentiment
Triplet Extraction
- arxiv url: http://arxiv.org/abs/2211.15003v2
- Date: Tue, 29 Nov 2022 07:07:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 12:07:30.210617
- Title: STAGE: Span Tagging and Greedy Inference Scheme for Aspect Sentiment
Triplet Extraction
- Title(参考訳): stage: アスペクト感情三重項抽出のためのスパンタグとグリーディ推論法
- Authors: Shuo Liang, Wei Wei, Xian-Ling Mao, Yuanyuan Fu, Rui Fang, Dangyang
Chen
- Abstract要約: Aspect Sentiment Triplet extract (ASTE) は感情分析研究において新たな課題となっている。
Span TAgging and Greedy infErence (STAGE) を提案する。
- 参考スコア(独自算出の注目度): 17.192861356588597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aspect Sentiment Triplet Extraction (ASTE) has become an emerging task in
sentiment analysis research, aiming to extract triplets of the aspect term, its
corresponding opinion term, and its associated sentiment polarity from a given
sentence. Recently, many neural networks based models with different tagging
schemes have been proposed, but almost all of them have their limitations:
heavily relying on 1) prior assumption that each word is only associated with a
single role (e.g., aspect term, or opinion term, etc. ) and 2) word-level
interactions and treating each opinion/aspect as a set of independent words.
Hence, they perform poorly on the complex ASTE task, such as a word associated
with multiple roles or an aspect/opinion term with multiple words. Hence, we
propose a novel approach, Span TAgging and Greedy infErence (STAGE), to extract
sentiment triplets in span-level, where each span may consist of multiple words
and play different roles simultaneously. To this end, this paper formulates the
ASTE task as a multi-class span classification problem. Specifically, STAGE
generates more accurate aspect sentiment triplet extractions via exploring
span-level information and constraints, which consists of two components,
namely, span tagging scheme and greedy inference strategy. The former tag all
possible candidate spans based on a newly-defined tagging set. The latter
retrieves the aspect/opinion term with the maximum length from the candidate
sentiment snippet to output sentiment triplets. Furthermore, we propose a
simple but effective model based on the STAGE, which outperforms the
state-of-the-arts by a large margin on four widely-used datasets. Moreover, our
STAGE can be easily generalized to other pair/triplet extraction tasks, which
also demonstrates the superiority of the proposed scheme STAGE.
- Abstract(参考訳): Aspect Sentiment Triplet extract (ASTE) は感情分析研究において新たな課題となり、ある文からアスペクト項とその対応する意見項とその関連する感情極性を抽出することを目指している。
近年、異なるタグ付けスキームを持つ多くのニューラルネットワークベースのモデルが提案されているが、ほとんどすべてのモデルには制限がある。
1) 各単語が1つの役割(アスペクト項や意見項など)にのみ関連しているという事前仮定
2) 単語レベルの相互作用と各意見/アスペクトを独立した単語の集合として扱う。
したがって、複数の役割に関連する単語や複数の単語を持つアスペクト/オピニオン項など、複雑なasteタスクではパフォーマンスが低下する。
そこで我々は,Span TAgging と Greedy infErence (STAGE) という新たなアプローチを提案し,複数の単語から構成され,同時に異なる役割を演じることができる。
そこで本稿では,ASTEタスクを多クラススパン分類問題として定式化する。
具体的には、スパンレベルの情報と制約、すなわちスパンタグスキームとグリーディ推論戦略の2つのコンポーネントを探索することで、より正確なアスペクト感情三重項抽出を生成する。
前者のタグは、新しく定義されたタグセットに基づいて、可能な候補すべてにまたがる。
後者は、候補感情スニペットから最大長のアスペクト/オピニオン項を取得し、感情三重項を出力する。
さらに,このステージに基づく簡易かつ効果的なモデルを提案する。これは4つの広く使用されているデータセットにおいて,最先端を大きなマージンで上回っている。
さらに,STAGE を他のペア/トリップレット抽出タスクに簡単に一般化することができ,提案方式の STAGE の優位性を示す。
関連論文リスト
- PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis [74.41260927676747]
本稿では,マルチモーダル対話感分析(ABSA)を導入することでギャップを埋める。
タスクをベンチマークするために、手動と自動の両方で注釈付けされたデータセットであるPanoSentを構築し、高品質、大規模、マルチモーダル、マルチ言語主義、マルチシナリオを特徴とし、暗黙の感情要素と明示的な感情要素の両方をカバーする。
課題を効果的に解決するために,新しい多モーダルな大規模言語モデル(すなわちSentica)とパラフレーズベースの検証機構とともに,新しい感覚の連鎖推論フレームワークを考案した。
論文 参考訳(メタデータ) (2024-08-18T13:51:01Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
マルチモーダルエンティティリンクタスクは、マルチモーダル知識グラフへの曖昧な言及を解決することを目的としている。
MELタスクを解決するための新しいMulti-Grained Multimodal InteraCtion Network $textbf(MIMIC)$ frameworkを提案する。
論文 参考訳(メタデータ) (2023-07-19T02:11:19Z) - Collaborative Group: Composed Image Retrieval via Consensus Learning from Noisy Annotations [67.92679668612858]
我々は,集団が個人より優れているという心理的概念に触発されたコンセンサスネットワーク(Css-Net)を提案する。
Css-Netは,(1)コンセンサスモジュールと4つのコンセンサスモジュール,(2)コンセンサス間の相互作用の学習を促進するKulback-Leibler分散損失の2つのコアコンポーネントから構成される。
ベンチマークデータセット、特にFashionIQでは、Css-Netが大幅に改善されている。特に、R@10が2.77%、R@50が6.67%増加し、リコールが大幅に向上している。
論文 参考訳(メタデータ) (2023-06-03T11:50:44Z) - Instruction Tuning for Few-Shot Aspect-Based Sentiment Analysis [72.9124467710526]
生成的アプローチは、テキストから(1つ以上の)4つの要素を1つのタスクとして抽出するために提案されている。
本稿では,ABSAを解くための統一的なフレームワークと,それに関連するサブタスクを提案する。
論文 参考訳(メタデータ) (2022-10-12T23:38:57Z) - TAGPRIME: A Unified Framework for Relational Structure Extraction [71.88926365652034]
TAGPRIMEは、与えられた条件に関する情報を入力テキストに追加するシーケンスタグ付けモデルである。
事前学習された言語モデルにおける自己認識機構により、プライミングワードは、出力された文脈化された表現に、与えられた条件に関するより多くの情報を含む。
5つの異なる言語にまたがる10のデータセットをカバーする3つのタスクに関する大規模な実験と分析は、TAGPRIMEの汎用性と有効性を示している。
論文 参考訳(メタデータ) (2022-05-25T08:57:46Z) - Span-level Bidirectional Cross-attention Framework for Aspect Sentiment
Triplet Extraction [10.522014946035664]
Aspect Sentiment Triplet extract (ASTE)は、アスペクト項、感情、意見項の三つ子をレビュー文から抽出することを目的とした、新しいきめ細かい感情分析タスクである。
本稿では,ASTEのための双方向双方向多目的フレームワークを提案する。
我々のフレームワークは最先端の手法よりも優れており、マルチトークンエンティティを用いた三重項予測の性能が向上している。
論文 参考訳(メタデータ) (2022-04-27T02:55:43Z) - PASTE: A Tagging-Free Decoding Framework Using Pointer Networks for
Aspect Sentiment Triplet Extraction [12.921737393688245]
Aspect Sentiment Triplet extract (ASTE)は、意見の対象または側面、関連する感情、およびそれに対応する意見用語/スパンからなる意見三つ子を抽出する。
我々は、ポイントネットワークベースのデコードフレームワークでエンコーダ・デコーダアーキテクチャを適用し、各ステップで全意見の三重項を生成する。
論文 参考訳(メタデータ) (2021-10-10T13:39:39Z) - Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction [25.984894351763945]
Aspect Sentiment Triplet extract (ASTE)はABSAの最新のサブタスクである。
最近のモデルはエンドツーエンドで三重項抽出を行うが、それぞれの単語と意見語間の相互作用に強く依存している。
提案するスパンレベルアプローチは,感情関係を予測する際に,対象の全体と意見の相互作用を明示的に検討する。
論文 参考訳(メタデータ) (2021-07-26T13:47:31Z) - Semantic and Syntactic Enhanced Aspect Sentiment Triplet Extraction [18.331779474247323]
Aspect Sentiment Triplet extractは、文章から三つ子を抽出することを目的としており、それぞれの三つ子には、エンティティ、関連する感情、そして感情の理由を説明する意見が含まれる。
本稿では,三重項要素間の統語的・意味的関係を完全に活用し,共同抽出を行うセマンティック・シンタクティック・エンハンスメント・アスペクト・センチメント三重項抽出モデル(S3E2)を提案する。
論文 参考訳(メタデータ) (2021-06-07T03:16:51Z) - A More Fine-Grained Aspect-Sentiment-Opinion Triplet Extraction Task [19.101354902943154]
よりきめ細かいAspect-Sentiment-Opinion Triplet Extraction Taskを紹介します。
ASOTEが抽出した三重項の感情は、アスペクト項と意見項ペアの感情である。
いくつかの一般的なABSAベンチマークに基づいて、ASOTE用の4つのデータセットを構築します。
論文 参考訳(メタデータ) (2021-03-29T00:42:51Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
利用可能な注釈付き発話が不足しているため、インテント検出は困難である。
セマンティック成分はマルチヘッド自己認識によって発話から蒸留される。
本手法はラベル付きインスタンスとラベルなしインスタンスの両方の表現を強化するための総合的なマッチング手段を提供する。
論文 参考訳(メタデータ) (2020-10-06T05:16:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。