Meet-in-the-middle: Multi-scale upsampling and matching for
cross-resolution face recognition
- URL: http://arxiv.org/abs/2211.15225v2
- Date: Tue, 29 Nov 2022 09:28:14 GMT
- Title: Meet-in-the-middle: Multi-scale upsampling and matching for
cross-resolution face recognition
- Authors: Klemen Grm, Berk Kemal \"Ozata, Vitomir \v{S}truc, Haz{\i}m Kemal
Ekenel
- Abstract summary: We propose a method that combines face super-resolution, resolution matching, and multi-scale template accumulation to reliably recognize faces from surveillance footage.
The proposed approach does not require training or fine-tuning on the target dataset of real surveillance images.
- Score: 8.330506641637793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to address the large domain gap between high-resolution
face images, e.g., from professional portrait photography, and low-quality
surveillance images, e.g., from security cameras. Establishing an identity
match between disparate sources like this is a classical surveillance face
identification scenario, which continues to be a challenging problem for modern
face recognition techniques. To that end, we propose a method that combines
face super-resolution, resolution matching, and multi-scale template
accumulation to reliably recognize faces from long-range surveillance footage,
including from low quality sources. The proposed approach does not require
training or fine-tuning on the target dataset of real surveillance images.
Extensive experiments show that our proposed method is able to outperform even
existing methods fine-tuned to the SCFace dataset.
Related papers
- DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
Deepfake detection refers to detecting artificially generated or edited faces in images or videos.
We propose a novel Deepfake detection framework named DeepFidelity to adaptively distinguish real and fake faces.
arXiv Detail & Related papers (2023-12-07T07:19:45Z) - COMICS: End-to-end Bi-grained Contrastive Learning for Multi-face Forgery Detection [56.7599217711363]
Face forgery recognition methods can only process one face at a time.
Most face forgery recognition methods can only process one face at a time.
We propose COMICS, an end-to-end framework for multi-face forgery detection.
arXiv Detail & Related papers (2023-08-03T03:37:13Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Cross-resolution Face Recognition via Identity-Preserving Network and
Knowledge Distillation [12.090322373964124]
Cross-resolution face recognition is a challenging problem for modern deep face recognition systems.
This paper proposes a new approach that enforces the network to focus on the discriminative information stored in the low-frequency components of a low-resolution image.
arXiv Detail & Related papers (2023-03-15T14:52:46Z) - Homogeneous Low-Resolution Face Recognition Method based Correlation
Features [3.747737951407512]
Low-resolution feature of surveillance video and images makes it difficult for high-resolution face recognition algorithms to extract effective feature information.
As face recognition in security surveillance becomes more important in the era of dense urbanization, it is essential to develop algorithms that are able to provide satisfactory performance in processing the video frames generated by low-resolution surveillance cameras.
This paper study on the Correlation Features-based Face Recognition (CoFFaR) method which using for homogeneous low-resolution surveillance videos, the theory, experimental details, and experimental results are elaborated in detail.
arXiv Detail & Related papers (2021-11-25T17:11:52Z) - Detect and Locate: A Face Anti-Manipulation Approach with Semantic and
Noise-level Supervision [67.73180660609844]
We propose a conceptually simple but effective method to efficiently detect forged faces in an image.
The proposed scheme relies on a segmentation map that delivers meaningful high-level semantic information clues about the image.
The proposed model achieves state-of-the-art detection accuracy and remarkable localization performance.
arXiv Detail & Related papers (2021-07-13T02:59:31Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - Multi Scale Identity-Preserving Image-to-Image Translation Network for
Low-Resolution Face Recognition [7.6702700993064115]
We propose an identity-preserving end-to-end image-to-image translation deep neural network.
It is capable of super-resolving very low-resolution faces to their high-resolution counterparts while preserving identity-related information.
arXiv Detail & Related papers (2020-10-23T09:21:06Z) - Robust Face Alignment by Multi-order High-precision Hourglass Network [44.94500006611075]
This paper proposes a heatmap subpixel regression (HSR) method and a multi-order cross geometry-aware (MCG) model.
The HSR method is proposed to achieve high-precision landmark detection by a well-designed subpixel detection loss (SDL) and subpixel detection technology (SDT)
At the same time, the MCG model is able to use the proposed multi-order cross information to learn more discriminative representations for enhancing facial geometric constraints and context information.
arXiv Detail & Related papers (2020-10-17T05:40:30Z) - Cross-Resolution Adversarial Dual Network for Person Re-Identification
and Beyond [59.149653740463435]
Person re-identification (re-ID) aims at matching images of the same person across camera views.
Due to varying distances between cameras and persons of interest, resolution mismatch can be expected.
We propose a novel generative adversarial network to address cross-resolution person re-ID.
arXiv Detail & Related papers (2020-02-19T07:21:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.