論文の概要: The Stack: 3 TB of permissively licensed source code
- arxiv url: http://arxiv.org/abs/2211.15533v1
- Date: Sun, 20 Nov 2022 18:15:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-04 14:26:27.138753
- Title: The Stack: 3 TB of permissively licensed source code
- Title(参考訳): the stack: 3tbの許容ライセンスソースコード
- Authors: Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou,
Carlos Mu\~noz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes,
Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra, Harm de Vries
- Abstract要約: Stackは、30のプログラミング言語でパーミッシブにライセンスされたソースコードのデータセットである。
以前報告されたHumanEvalとMBPPのパフォーマンスは、パーミッシブライセンスデータのみを使用して一致させることができる。
- 参考スコア(独自算出の注目度): 22.522188673911792
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large Language Models (LLMs) play an ever-increasing role in the field of
Artificial Intelligence (AI)--not only for natural language processing but also
for code understanding and generation. To stimulate open and responsible
research on LLMs for code, we introduce The Stack, a 3.1 TB dataset consisting
of permissively licensed source code in 30 programming languages. We describe
how we collect the full dataset, construct a permissively licensed subset,
present a data governance plan, discuss limitations, and show promising results
on text2code benchmarks by training 350M-parameter decoders on different Python
subsets. We find that (1) near-deduplicating the data significantly boosts
performance across all experiments, and (2) it is possible to match previously
reported HumanEval and MBPP performance using only permissively licensed data.
We make the dataset available at https://hf.co/BigCode, provide a tool called
"Am I in The Stack" (https://hf.co/spaces/bigcode/in-the-stack) for developers
to search The Stack for copies of their code, and provide a process for code to
be removed from the dataset by following the instructions at
https://www.bigcode-project.org/docs/about/the-stack/.
- Abstract(参考訳): 大規模言語モデル(llm)は、自然言語処理だけでなく、コード理解や生成においても、人工知能(ai)の分野でますます活発な役割を果たす。
コードのllmsに関するオープンで責任のある研究を刺激するために、30のプログラミング言語で許容ライセンスのソースコードからなる3.1tbのデータセットであるスタックを紹介します。
我々は、データセットの収集方法を説明し、許容ライセンスのサブセットを構築し、データガバナンス計画を示し、制限について議論し、さまざまなpythonサブセット上で350mのパラメータデコーダをトレーニングすることで、text2codeベンチマークで有望な結果を示す。
1)データをほぼ重複させることで,すべての実験において性能が著しく向上し,(2)従来報告されていたHumanEvalとMBPPのパフォーマンスとをパーミッシブライセンスデータのみで一致させることができる。
私たちはデータセットをhttps://hf.co/BigCodeで公開し、開発者は"Am I in The Stack" (https://hf.co/spaces/bigcode/in-stack) というツールを開発者に提供する。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Leveraging Large Language Models in Code Question Answering: Baselines and Issues [0.1617522438111378]
本稿では,Pythonのソースコードに対する質問応答のために,大規模言語モデルを用いた研究について述べる。
提案手法は,Pythonコードの問合せと解答の統一データセット上で,大規模言語モデルを微調整することを含む。
手動エラー解析の結果とともに,BLEU-4,BERTScore F1,BLEURT,Exact Matchの測定値について報告する。
論文 参考訳(メタデータ) (2024-11-05T11:25:12Z) - SEART Data Hub: Streamlining Large-Scale Source Code Mining and Pre-Processing [13.717170962455526]
私たちはSEART Data HubというWebアプリケーションを紹介します。これは、公開GitHubリポジトリからマイニングされたコードを特徴とする大規模データセットを簡単に構築し、事前処理できるWebアプリケーションです。
簡単なWebインターフェースを通じて、研究者はマイニング基準と、実行したい特定の前処理ステップを指定できる。
リクエストを提出すると、ユーザは数時間以内に、必要なデータセットのダウンロードリンク付きのメールを受け取る。
論文 参考訳(メタデータ) (2024-09-27T11:42:19Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - StarCoder 2 and The Stack v2: The Next Generation [105.93298676368798]
私たちは3.3から4.3兆のトークンで3B、7B、15BパラメータでStarCoder2モデルをトレーニングします。
我々は、それらをCode LLMベンチマークの包括的なセットで徹底的に評価する。
私たちの大きなモデルであるStarCoder2-15Bは、同等の大きさの他のモデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-02-29T13:53:35Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
大規模言語モデル(LLM)は、コード生成において印象的なコンテキスト内学習(ICL)能力を示している。
コード生成のためのLAIL (LLM-Aware In-context Learning) という新しい学習ベース選択手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T06:12:58Z) - Knowledge Transfer from High-Resource to Low-Resource Programming Languages for Code LLMs [2.9242435458494445]
本稿では,半合成データを用いた低リソース言語上でのコードLLMの性能向上に有効な手法を提案する。
このアプローチを適用して,Julia,Lua,OCaml,R,Racketの各トレーニング項目を数万個生成する。
論文 参考訳(メタデータ) (2023-08-19T03:19:01Z) - Creating a Dataset for High-Performance Computing Code Translation using
LLMs: A Bridge Between OpenMP Fortran and C++ [7.872005563259838]
定量化(CodeBLEU)法と定性的評価(人的評価)法の両方を用いて,本データセットの有効性を評価する。
事前のコーディング知識を持たないモデルでは、CodeBLEUスコアで$mathbftimes5.1$が上昇した。
コーディングに親しみのあるモデルでは、$mathbftimes9.9$-foldが顕著に増加した。
論文 参考訳(メタデータ) (2023-07-15T02:35:51Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z) - XLCoST: A Benchmark Dataset for Cross-lingual Code Intelligence [9.673614921946932]
本稿では,言語間コードインテリジェンスのための新しいベンチマークデータセットであるXLCoST, Cross-Lingual Code SnippeTデータセットを紹介する。
データセットには8言語からの詳細な並列データが含まれており、10の言語間コードタスクをサポートしている。
論文 参考訳(メタデータ) (2022-06-16T22:49:39Z) - Incorporating External Knowledge through Pre-training for Natural
Language to Code Generation [97.97049697457425]
オープンドメインコード生成は、自然言語(NL)の意図から汎用プログラミング言語でコードを生成することを目的としている。
オンラインプログラミングQAフォーラムStackOverflowとプログラミング言語APIドキュメントからNL-codeペアを自動的にマイニングする。
評価の結果,2つのソースとデータ拡張と検索ベースデータ再サンプリングを組み合わせることで,コード生成テストベッドCoNaLa上でのBLEUスコアが最大2.2%向上することがわかった。
論文 参考訳(メタデータ) (2020-04-20T01:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。