Overcoming fundamental bounds on quantum conference key agreement
- URL: http://arxiv.org/abs/2211.15559v1
- Date: Mon, 28 Nov 2022 17:09:41 GMT
- Title: Overcoming fundamental bounds on quantum conference key agreement
- Authors: Giacomo Carrara, Gl\'aucia Murta and Federico Grasselli
- Abstract summary: Twin-Field Quantum Key Distribution (TF-QKD) enables two distant parties to establish a shared secret key.
TF-QKD is the only scheme capable of beating the repeaterless bound on the bipartite private capacity.
We propose a practical conference key agreement protocol that only uses WCPs and linear optics and prove its security with a multiparty decoy-state method.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Twin-Field Quantum Key Distribution (TF-QKD) enables two distant parties to
establish a shared secret key, by interfering weak coherent pulses (WCPs) in an
intermediate measuring station. This allows TF-QKD to reach greater distances
than traditional QKD schemes and makes it the only scheme capable of beating
the repeaterless bound on the bipartite private capacity. Here, we generalize
TF-QKD to the multipartite scenario. Specifically, we propose a practical
conference key agreement (CKA) protocol that only uses WCPs and linear optics
and prove its security with a multiparty decoy-state method. Our protocol
allows an arbitrary number of parties to establish a secret conference key by
single-photon interference, enabling it to overcome recent bounds on the rate
at which conference keys can be established in quantum networks without a
repeater.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Twin-field-based multi-party quantum key agreement [0.0]
We study a method to extend the twin-field key distribution protocol to a scheme for multi-party quantum key agreement.
We derive the key rate based on the entanglement-based source-replacement scheme.
arXiv Detail & Related papers (2024-09-06T11:51:10Z) - Experimental anonymous quantum conferencing [72.27323884094953]
We experimentally implement the AQCKA task in a six-user quantum network using Greenberger-Horne-Zeilinger (GHZ)-state entanglement.
We also demonstrate that the protocol retains an advantage in a four-user scenario with finite key effects taken into account.
arXiv Detail & Related papers (2023-11-23T19:00:01Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - High-Rate Point-to-Multipoint Quantum Key Distribution using Coherent
States [6.058240259980149]
Quantum key distribution (QKD) which enables information-theoretically security is now heading towards quantum secure networks.
It requires high-performance and cost-effective protocols while increasing the number of users.
Here, we show a 'protocol solution' using continuous-variable quantum information.
arXiv Detail & Related papers (2023-02-05T14:21:33Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Coherent one-way quantum conference key agreement based on twin field [9.369069713000165]
Quantum conference key agreement (CKA) enables key sharing among trusted users with information-theoretic security.
We propose a quantum CKA protocol of three users.
Exploiting coherent states with intensity 0 and $mu$ to encode logic bits, our protocol can break the limit.
arXiv Detail & Related papers (2021-09-06T03:53:08Z) - Overcoming the rate-distance limit of device-independent quantum key
distribution [7.864517207531803]
Device-independent quantum key distribution (DIQKD) exploits the violation of a Bell inequality to extract secure key.
We propose a heralded DIQKD scheme based on entangled coherent states to improve entangling rates.
arXiv Detail & Related papers (2021-03-31T14:58:46Z) - Quantum Conference Key Agreement: A Review [0.0]
Multipartite key distribution is a cryptographic task where more than two parties wish to establish a common secret key.
Here, we review the existing quantum CKA protocols based on multipartite entanglement.
arXiv Detail & Related papers (2020-03-23T11:29:24Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.