Quantum Conference Key Agreement: A Review
- URL: http://arxiv.org/abs/2003.10186v2
- Date: Mon, 5 Oct 2020 12:48:05 GMT
- Title: Quantum Conference Key Agreement: A Review
- Authors: Gl\'aucia Murta, Federico Grasselli, Hermann Kampermann, and Dagmar
Bru{\ss}
- Abstract summary: Multipartite key distribution is a cryptographic task where more than two parties wish to establish a common secret key.
Here, we review the existing quantum CKA protocols based on multipartite entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conference key agreement (CKA), or multipartite key distribution, is a
cryptographic task where more than two parties wish to establish a common
secret key. A composition of bipartite quantum key distribution protocols can
accomplish this task. However, the existence of multipartite quantum
correlations allows for new and potentially more efficient protocols, to be
applied in future quantum networks. Here, we review the existing quantum CKA
protocols based on multipartite entanglement, both in the device-dependent and
the device-independent scenario.
Related papers
- Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Twin-field-based multi-party quantum key agreement [0.0]
We study a method to extend the twin-field key distribution protocol to a scheme for multi-party quantum key agreement.
We derive the key rate based on the entanglement-based source-replacement scheme.
arXiv Detail & Related papers (2024-09-06T11:51:10Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Experimental anonymous quantum conferencing [72.27323884094953]
We experimentally implement the AQCKA task in a six-user quantum network using Greenberger-Horne-Zeilinger (GHZ)-state entanglement.
We also demonstrate that the protocol retains an advantage in a four-user scenario with finite key effects taken into account.
arXiv Detail & Related papers (2023-11-23T19:00:01Z) - Overcoming fundamental bounds on quantum conference key agreement [0.0]
Twin-Field Quantum Key Distribution (TF-QKD) enables two distant parties to establish a shared secret key.
TF-QKD is the only scheme capable of beating the repeaterless bound on the bipartite private capacity.
We propose a practical conference key agreement protocol that only uses WCPs and linear optics and prove its security with a multiparty decoy-state method.
arXiv Detail & Related papers (2022-11-28T17:09:41Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Anonymous conference key agreement in linear quantum networks [0.29998889086656577]
Conference key agreement (CKA) is an extension of key distribution to multiple parties.
CKA can also be performed in a way that protects the identities of the participating parties, therefore providing anonymity.
We propose an anonymous CKA protocol for three parties that is implemented in a highly practical network setting.
arXiv Detail & Related papers (2022-05-18T18:38:52Z) - Coherent one-way quantum conference key agreement based on twin field [9.369069713000165]
Quantum conference key agreement (CKA) enables key sharing among trusted users with information-theoretic security.
We propose a quantum CKA protocol of three users.
Exploiting coherent states with intensity 0 and $mu$ to encode logic bits, our protocol can break the limit.
arXiv Detail & Related papers (2021-09-06T03:53:08Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Anonymous Conference Key Agreement in Quantum Networks [0.0]
Quantum Conference Key Agreement (CKA) is a cryptographic effort of multiple parties to establish a shared secret key.
We provide the first protocol for Anonymous Quantum Conference Key Agreement.
arXiv Detail & Related papers (2020-07-15T21:17:41Z) - Experimental quantum conference key agreement [55.41644538483948]
Quantum networks will provide multi-node entanglement over long distances to enable secure communication on a global scale.
Here we demonstrate quantum conference key agreement, a quantum communication protocol that exploits multi-partite entanglement.
We distribute four-photon Greenberger-Horne-Zeilinger (GHZ) states generated by high-brightness, telecom photon-pair sources across up to 50 km of fibre.
arXiv Detail & Related papers (2020-02-04T19:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.