Frustratingly Easy Label Projection for Cross-lingual Transfer
- URL: http://arxiv.org/abs/2211.15613v5
- Date: Mon, 28 Oct 2024 17:03:04 GMT
- Title: Frustratingly Easy Label Projection for Cross-lingual Transfer
- Authors: Yang Chen, Chao Jiang, Alan Ritter, Wei Xu,
- Abstract summary: A few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection.
We present an empirical study across 57 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods.
Our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods.
- Score: 25.398772204761215
- License:
- Abstract: Translating training data into many languages has emerged as a practical solution for improving cross-lingual transfer. For tasks that involve span-level annotations, such as information extraction or question answering, an additional label projection step is required to map annotated spans onto the translated texts. Recently, a few efforts have utilized a simple mark-then-translate method to jointly perform translation and projection by inserting special markers around the labeled spans in the original sentence. However, as far as we are aware, no empirical analysis has been conducted on how this approach compares to traditional annotation projection based on word alignment. In this paper, we present an extensive empirical study across 57 languages and three tasks (QA, NER, and Event Extraction) to evaluate the effectiveness and limitations of both methods, filling an important gap in the literature. Experimental results show that our optimized version of mark-then-translate, which we call EasyProject, is easily applied to many languages and works surprisingly well, outperforming the more complex word alignment-based methods. We analyze several key factors that affect the end-task performance, and show EasyProject works well because it can accurately preserve label span boundaries after translation. We will publicly release all our code and data.
Related papers
- Improving Multi-lingual Alignment Through Soft Contrastive Learning [9.454626745893798]
We propose a novel method to align multi-lingual embeddings based on the similarity of sentences measured by a pre-trained mono-lingual embedding model.
Given translation sentence pairs, we train a multi-lingual model in a way that the similarity between cross-lingual embeddings follows the similarity of sentences measured at the mono-lingual teacher model.
arXiv Detail & Related papers (2024-05-25T09:46:07Z) - Cross-lingual Contextualized Phrase Retrieval [63.80154430930898]
We propose a new task formulation of dense retrieval, cross-lingual contextualized phrase retrieval.
We train our Cross-lingual Contextualized Phrase Retriever (CCPR) using contrastive learning.
On the phrase retrieval task, CCPR surpasses baselines by a significant margin, achieving a top-1 accuracy that is at least 13 points higher.
arXiv Detail & Related papers (2024-03-25T14:46:51Z) - Constrained Decoding for Cross-lingual Label Projection [27.567195418950966]
Cross-lingual transfer using multilingual LLMs has become a popular learning paradigm for low-resource languages with no labeled training data.
However, for NLP tasks that involve fine-grained predictions on words and phrases, the performance of zero-shot cross-lingual transfer learning lags far behind supervised fine-tuning methods.
arXiv Detail & Related papers (2024-02-05T15:57:32Z) - Contextual Label Projection for Cross-Lingual Structured Prediction [103.55999471155104]
CLaP translates text to the target language and performs contextual translation on the labels using the translated text as the context.
We benchmark CLaP with other label projection techniques on zero-shot cross-lingual transfer across 39 languages.
arXiv Detail & Related papers (2023-09-16T10:27:28Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - CROP: Zero-shot Cross-lingual Named Entity Recognition with Multilingual
Labeled Sequence Translation [113.99145386490639]
Cross-lingual NER can transfer knowledge between languages via aligned cross-lingual representations or machine translation results.
We propose a Cross-lingual Entity Projection framework (CROP) to enable zero-shot cross-lingual NER.
We adopt a multilingual labeled sequence translation model to project the tagged sequence back to the target language and label the target raw sentence.
arXiv Detail & Related papers (2022-10-13T13:32:36Z) - Statistical and Neural Methods for Cross-lingual Entity Label Mapping in
Knowledge Graphs [4.466084612775998]
We investigate the application of word and sentence alignment techniques to align cross-lingual entity labels extracted from Wikidata in 10 languages.
Our results indicate that mapping between Wikidata's main labels stands to be considerably improved (up to $20$ points in F1-score) by any of the employed methods.
arXiv Detail & Related papers (2022-06-17T11:57:08Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
We extend the vanilla pretrain-finetune pipeline with extra code-switching restore task to bridge the gap between the pretrain and finetune stages.
Our approach could narrow the cross-lingual sentence representation distance and improve low-frequency word translation with trivial computational cost.
arXiv Detail & Related papers (2022-04-16T16:08:38Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.