Quantum diffeomorphisms cannot make indefinite causal order definite
- URL: http://arxiv.org/abs/2211.15685v1
- Date: Mon, 28 Nov 2022 19:00:01 GMT
- Title: Quantum diffeomorphisms cannot make indefinite causal order definite
- Authors: Anne-Catherine de la Hamette, Viktoria Kabel, Marios Christodoulou,
and \v{C}aslav Brukner
- Abstract summary: We provide an unambiguous definition of causal order between two events in terms of worldline coincidences and the proper time of a third particle.
We show that superpositions of causal order defined as such cannot be rendered definite even through the most general class of coordinate transformations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of indefinite causal order has seen rapid development, both
theoretically and experimentally, in recent years. While classically the causal
order of two timelike separated events A and B is fixed - either A before B or
B before A - this is no longer true in quantum theory. There, it is possible to
encounter superpositions of causal orders. In light of recent work on quantum
reference frames, which reveals that the superposition of locations, momenta,
and other properties can depend on the choice of reference frame or coordinate
system, the question arises whether this also holds true for superpositions of
causal orders. Here, we provide a negative answer to this question for quantum
diffeomorphisms. First, we provide an unambiguous definition of causal order
between two events in terms of worldline coincidences and the proper time of a
third particle. Then, we show that superpositions of causal order defined as
such cannot be rendered definite even through the most general class of
coordinate transformations - quantum-controlled, independent diffeomorphisms in
each branch. Finally, based on our results, we connect the information
theoretic and gravitational perspectives on indefinite causal order.
Related papers
- Emergence of cosmic structure from Planckian discreteness [47.03992469282679]
In the standard paradigm the inhomogeneities observed in the CMB arise from quantum fluctuations of an initially homogeneous and isotropic vacuum state.<n>We propose an alternative paradigm in which such inhomogeneities are present from the very beginning.<n>Specifically, inhomogeneities in the quantum state at the Planck scale propagate into semiclassical inhomogeneities on CMB scales.
arXiv Detail & Related papers (2025-06-18T12:33:31Z) - Kochen-Specker for many qubits and the classical limit [55.2480439325792]
It is shown that quantum and classical predictions converge as the number of qubits is increases to the macroscopic scale.
This way to explain the classical limit concurs with, and improves, a result previously reported for GHZ states.
arXiv Detail & Related papers (2024-11-26T22:30:58Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Possibilistic and maximal indefinite causal order in the quantum switch [0.0]
We show that the indefinite causal order in the quantum switch can be certified device-independently when assuming the impossibility of superluminal influences.
We also show that the observed correlations are incompatible even with the existence of a causal order on only a small fraction of the runs of the experiment.
arXiv Detail & Related papers (2023-11-01T14:55:03Z) - Indefinite order in the interface of quantum mechanics and gravity [0.0]
We discuss the notion of indefinite order, which first appears in an abstract generalization of Quantum Theory.
We present how scenarios involving gravity in low energies could lead to indefinite order.
arXiv Detail & Related papers (2023-10-03T01:16:27Z) - Quantum Discord Witness with Uncharacterized Devices [18.751513188036334]
We propose a new approach using uncharacterized measurements to witness quantum discord of an unknown bipartite state within arbitrary dimension system.
The feature of high robustness against device imperfections, such as loss-tolerance and error-tolerance, shows our method is experimentally feasible.
arXiv Detail & Related papers (2023-03-20T14:51:53Z) - Coherent control of a high-orbital hole in a semiconductor quantum dot [21.05348937863074]
coherent manipulation of single charge carriers in quantum dots is limited mainly to their lowest orbital states.
We demonstrate an all-optical method to control high-orbital states of a hole via stimulated Auger process.
Our work opens new possibilities for understanding the fundamental properties of high-orbital states in quantum emitters.
arXiv Detail & Related papers (2022-12-21T03:49:46Z) - Experimental superposition of time directions [0.5018974919510384]
We consider quantum processes probed in a coherent superposition of forwards and backwards time directions.
This yields a broader class of quantum processes than the ones considered so far in the literature.
We demonstrate for the first time an operation belonging to this new class: the quantum time flip.
arXiv Detail & Related papers (2022-11-02T17:05:49Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - No-signalling constrains quantum computation with indefinite causal
structure [45.279573215172285]
We develop a formalism for quantum computation with indefinite causal structures.
We characterize the computational structure of higher order quantum maps.
We prove that these rules, which have a computational and information-theoretic nature, are determined by the more physical notion of the signalling relations between the quantum systems.
arXiv Detail & Related papers (2022-02-21T13:43:50Z) - Experiments on quantum causality [0.0]
Quantum causality extends the conventional notion of fixed causal structure by allowing channels and operations to act in an indefinite causal order.
In this review, we will walk through the basic theory of indefinite causal order and focus on experiments that rely on a physically realisable indefinite causal ordered process.
arXiv Detail & Related papers (2020-09-01T15:25:26Z) - Quantum chicken-egg dilemmas: Delayed-choice causal order and the
reality of causal non-separability [0.0]
We show that causally indefinite processes can be realised with schemes where C serves only as a classical flag.
We demonstrate that quantum mechanics allows for phenomena where C can deterministically decide whether A comes before B or vice versa.
arXiv Detail & Related papers (2020-08-18T12:03:31Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.