Fast Hyperparameter Tuning for Ising Machines
- URL: http://arxiv.org/abs/2211.15869v1
- Date: Tue, 29 Nov 2022 01:53:31 GMT
- Title: Fast Hyperparameter Tuning for Ising Machines
- Authors: Matthieu Parizy, Norihiro Kakuko and Nozomu Togawa
- Abstract summary: "FastConvergence" is a convergence acceleration method for Tree-structured Parzen Estimator (TPE)
For experiments, well-known Travel Salesman Problem (TSP) and Quadratic Assignment Problem (QAP) instances are used as input.
Results show, FastConvergence can reach similar results to TPE alone within less than half the number of trials.
- Score: 0.8057006406834467
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel technique to accelerate Ising machines
hyperparameter tuning. Firstly, we define Ising machine performance and explain
the goal of hyperparameter tuning in regard to this performance definition.
Secondly, we compare well-known hyperparameter tuning techniques, namely random
sampling and Tree-structured Parzen Estimator (TPE) on different combinatorial
optimization problems. Thirdly, we propose a new convergence acceleration
method for TPE which we call "FastConvergence".It aims at limiting the number
of required TPE trials to reach best performing hyperparameter values
combination. We compare FastConvergence to previously mentioned well-known
hyperparameter tuning techniques to show its effectiveness. For experiments,
well-known Travel Salesman Problem (TSP) and Quadratic Assignment Problem (QAP)
instances are used as input. The Ising machine used is Fujitsu's third
generation Digital Annealer (DA). Results show, in most cases, FastConvergence
can reach similar results to TPE alone within less than half the number of
trials.
Related papers
- ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
We propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections.
In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters.
arXiv Detail & Related papers (2024-05-30T17:26:02Z) - Online Continuous Hyperparameter Optimization for Generalized Linear Contextual Bandits [55.03293214439741]
In contextual bandits, an agent sequentially makes actions from a time-dependent action set based on past experience.
We propose the first online continuous hyperparameter tuning framework for contextual bandits.
We show that it could achieve a sublinear regret in theory and performs consistently better than all existing methods on both synthetic and real datasets.
arXiv Detail & Related papers (2023-02-18T23:31:20Z) - AUTOMATA: Gradient Based Data Subset Selection for Compute-Efficient
Hyper-parameter Tuning [72.54359545547904]
We propose a gradient-based subset selection framework for hyper- parameter tuning.
We show that using gradient-based data subsets for hyper- parameter tuning achieves significantly faster turnaround times and speedups of 3$times$-30$times$.
arXiv Detail & Related papers (2022-03-15T19:25:01Z) - A Comparative study of Hyper-Parameter Optimization Tools [2.6097538974670935]
We compare the performance of four python libraries, namely Optuna, Hyperopt, Optunity, and sequential model algorithm configuration (SMAC)
We found that Optuna has better performance for CASH problem and NeurIPS black-box optimization challenge.
arXiv Detail & Related papers (2022-01-17T14:49:36Z) - HyP-ABC: A Novel Automated Hyper-Parameter Tuning Algorithm Using
Evolutionary Optimization [1.6114012813668934]
We propose HyP-ABC, an automatic hybrid hyper-parameter optimization algorithm using the modified artificial bee colony approach.
Compared to the state-of-the-art techniques, HyP-ABC is more efficient and has a limited number of parameters to be tuned.
arXiv Detail & Related papers (2021-09-11T16:45:39Z) - HyperNP: Interactive Visual Exploration of Multidimensional Projection
Hyperparameters [61.354362652006834]
HyperNP is a scalable method that allows for real-time interactive exploration of projection methods by training neural network approximations.
We evaluate the performance of the HyperNP across three datasets in terms of performance and speed.
arXiv Detail & Related papers (2021-06-25T17:28:14Z) - Amortized Auto-Tuning: Cost-Efficient Transfer Optimization for
Hyperparameter Recommendation [83.85021205445662]
We propose an instantiation--amortized auto-tuning (AT2) to speed up tuning of machine learning models.
We conduct a thorough analysis of the multi-task multi-fidelity Bayesian optimization framework, which leads to the best instantiation--amortized auto-tuning (AT2)
arXiv Detail & Related papers (2021-06-17T00:01:18Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Automatic Setting of DNN Hyper-Parameters by Mixing Bayesian
Optimization and Tuning Rules [0.6875312133832078]
We build a new algorithm for evaluating and analyzing the results of the network on the training and validation sets.
We use a set of tuning rules to add new hyper-parameters and/or to reduce the hyper- parameter search space to select a better combination.
arXiv Detail & Related papers (2020-06-03T08:53:48Z) - Weighted Random Search for Hyperparameter Optimization [0.0]
We introduce an improved version of Random Search (RS), used here for hyper parameter optimization of machine learning algorithms.
We generate new values for each hyper parameter with a probability of change, unlike the standard RS.
Within the same computational budget, our method yields better results than the standard RS.
arXiv Detail & Related papers (2020-04-03T15:41:22Z) - Weighted Random Search for CNN Hyperparameter Optimization [0.0]
We introduce the weighted Random Search (WRS) method, a combination of Random Search (RS) and probabilistic greedy.
The criterion is the classification accuracy achieved within the same number of tested combinations of hyperparameter values.
According to our experiments, the WRS algorithm outperforms the other methods.
arXiv Detail & Related papers (2020-03-30T09:40:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.