An Extreme-Adaptive Time Series Prediction Model Based on
Probability-Enhanced LSTM Neural Networks
- URL: http://arxiv.org/abs/2211.15891v1
- Date: Tue, 29 Nov 2022 03:01:59 GMT
- Title: An Extreme-Adaptive Time Series Prediction Model Based on
Probability-Enhanced LSTM Neural Networks
- Authors: Yanhong Li and Jack Xu and David C. Anastasiu
- Abstract summary: We propose a novel probability-enhanced neural network model, called NEC+, which concurrently learns extreme and normal prediction functions.
We evaluate the proposed model on the difficult 3-day ahead hourly water level prediction task applied to 9 reservoirs in California.
- Score: 6.5700527395783315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Forecasting time series with extreme events has been a challenging and
prevalent research topic, especially when the time series data are affected by
complicated uncertain factors, such as is the case in hydrologic prediction.
Diverse traditional and deep learning models have been applied to discover the
nonlinear relationships and recognize the complex patterns in these types of
data. However, existing methods usually ignore the negative influence of
imbalanced data, or severe events, on model training. Moreover, methods are
usually evaluated on a small number of generally well-behaved time series,
which does not show their ability to generalize. To tackle these issues, we
propose a novel probability-enhanced neural network model, called NEC+, which
concurrently learns extreme and normal prediction functions and a way to choose
among them via selective back propagation. We evaluate the proposed model on
the difficult 3-day ahead hourly water level prediction task applied to 9
reservoirs in California. Experimental results demonstrate that the proposed
model significantly outperforms state-of-the-art baselines and exhibits
superior generalization ability on data with diverse distributions.
Related papers
- Evidential time-to-event prediction model with well-calibrated uncertainty estimation [12.446406577462069]
We introduce an evidential regression model designed especially for time-to-event prediction tasks.
The most plausible event time is directly quantified by aggregated Gaussian random fuzzy numbers (GRFNs)
Our model achieves both accurate and reliable performance, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2024-11-12T15:06:04Z) - A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation [35.46631415365955]
We introduce a conditional diffusion framework called C$2$TSD, which incorporates disentangled temporal (trend and seasonality) representations as conditional information.
Our experiments on three real-world datasets demonstrate the superior performance of our approach compared to a number of state-of-the-art baselines.
arXiv Detail & Related papers (2024-02-18T11:59:04Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Towards Flexible Time-to-event Modeling: Optimizing Neural Networks via
Rank Regression [17.684526928033065]
We introduce the Deep AFT Rank-regression model for Time-to-event prediction (DART)
This model uses an objective function based on Gehan's rank statistic, which is efficient and reliable for representation learning.
The proposed method is a semiparametric approach to AFT modeling that does not impose any distributional assumptions on the survival time distribution.
arXiv Detail & Related papers (2023-07-16T13:58:28Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
We introduce the Probabilistic AutoRegressive Neural Networks (PARNN)
PARNN is capable of handling complex time series data exhibiting non-stationarity, nonlinearity, non-seasonality, long-range dependence, and chaotic patterns.
We evaluate the performance of PARNN against standard statistical, machine learning, and deep learning models, including Transformers, NBeats, and DeepAR.
arXiv Detail & Related papers (2022-04-01T17:57:36Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
We present Model-Attentive Ensemble learning for Sequence modeling (MAES)
MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions.
We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.
arXiv Detail & Related papers (2021-02-23T05:23:35Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Global Models for Time Series Forecasting: A Simulation Study [2.580765958706854]
We simulate time series from simple data generating processes (DGP), such as Auto Regressive (AR) and Seasonal AR, to complex DGPs, such as Chaotic Logistic Map, Self-Exciting Threshold Auto-Regressive, and Mackey-Glass equations.
The lengths and the number of series in the dataset are varied in different scenarios.
We perform experiments on these datasets using global forecasting models including Recurrent Neural Networks (RNN), Feed-Forward Neural Networks, Pooled Regression (PR) models, and Light Gradient Boosting Models (LGBM)
arXiv Detail & Related papers (2020-12-23T04:45:52Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.