A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation
- URL: http://arxiv.org/abs/2402.11558v2
- Date: Fri, 22 Mar 2024 08:41:08 GMT
- Title: A Temporally Disentangled Contrastive Diffusion Model for Spatiotemporal Imputation
- Authors: Yakun Chen, Kaize Shi, Zhangkai Wu, Juan Chen, Xianzhi Wang, Julian McAuley, Guandong Xu, Shui Yu,
- Abstract summary: We introduce a conditional diffusion framework called C$2$TSD, which incorporates disentangled temporal (trend and seasonality) representations as conditional information.
Our experiments on three real-world datasets demonstrate the superior performance of our approach compared to a number of state-of-the-art baselines.
- Score: 35.46631415365955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatiotemporal data analysis is pivotal across various domains, such as transportation, meteorology, and healthcare. The data collected in real-world scenarios are often incomplete due to device malfunctions and network errors. Spatiotemporal imputation aims to predict missing values by exploiting the spatial and temporal dependencies in the observed data. Traditional imputation approaches based on statistical and machine learning techniques require the data to conform to their distributional assumptions, while graph and recurrent neural networks are prone to error accumulation problems due to their recurrent structures. Generative models, especially diffusion models, can potentially circumvent the reliance on inaccurate, previously imputed values for future predictions; However, diffusion models still face challenges in generating stable results. We propose to address these challenges by designing conditional information to guide the generative process and expedite the training process. We introduce a conditional diffusion framework called C$^2$TSD, which incorporates disentangled temporal (trend and seasonality) representations as conditional information and employs contrastive learning to improve generalizability. Our extensive experiments on three real-world datasets demonstrate the superior performance of our approach compared to a number of state-of-the-art baselines.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - CODA: Temporal Domain Generalization via Concept Drift Simulator [34.21255368783787]
In real-world applications, machine learning models often become obsolete due to shifts in the joint distribution arising from underlying temporal trends.
We propose the COncept Drift simulAtor framework incorporating a predicted feature correlation matrix to simulate future data for model training.
arXiv Detail & Related papers (2023-10-02T18:04:34Z) - PriSTI: A Conditional Diffusion Framework for Spatiotemporal Imputation [35.62945607302276]
We propose a conditional diffusion framework for Stemporal imputation with the prior modeling, named PriSTI.
PriSTI outperforms existing imputation methods in various missing patterns of different real-world data, and effectively handles scenarios such as high missing rates and sensor failure.
arXiv Detail & Related papers (2023-02-20T03:52:53Z) - Diffusion-based Time Series Imputation and Forecasting with Structured
State Space Models [2.299617836036273]
We put forward SSSD, an imputation model that relies on two emerging technologies,conditional diffusion models and structured state space models.
We demonstrate that SSSD matches or even exceeds state-of-the-art probabilistic imputation and forecasting performance on a broad range of data sets and different missingness scenarios.
arXiv Detail & Related papers (2022-08-19T15:29:43Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data.
In this work, we consider the time-series data as a random realization from a nonlinear state-space model.
We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings.
arXiv Detail & Related papers (2021-06-10T21:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.