Device Modeling Bias in ReRAM-based Neural Network Simulations
- URL: http://arxiv.org/abs/2211.15925v1
- Date: Tue, 29 Nov 2022 04:45:06 GMT
- Title: Device Modeling Bias in ReRAM-based Neural Network Simulations
- Authors: Osama Yousuf, Imtiaz Hossen, Matthew W. Daniels, Martin Lueker-Boden,
Andrew Dienstfrey, Gina C. Adam
- Abstract summary: Data-driven modeling approaches such as jump tables are promising to model memory devices for neural network simulations.
We study how various jump table device models impact the attained network performance estimates.
Results on a multi-layer perceptron trained on MNIST show that device models based on binning can behave unpredictably.
- Score: 1.5490932775843136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven modeling approaches such as jump tables are promising techniques
to model populations of resistive random-access memory (ReRAM) or other
emerging memory devices for hardware neural network simulations. As these
tables rely on data interpolation, this work explores the open questions about
their fidelity in relation to the stochastic device behavior they model. We
study how various jump table device models impact the attained network
performance estimates, a concept we define as modeling bias. Two methods of
jump table device modeling, binning and Optuna-optimized binning, are explored
using synthetic data with known distributions for benchmarking purposes, as
well as experimental data obtained from TiOx ReRAM devices. Results on a
multi-layer perceptron trained on MNIST show that device models based on
binning can behave unpredictably particularly at low number of points in the
device dataset, sometimes over-promising, sometimes under-promising target
network accuracy. This paper also proposes device level metrics that indicate
similar trends with the modeling bias metric at the network level. The proposed
approach opens the possibility for future investigations into statistical
device models with better performance, as well as experimentally verified
modeling bias in different in-memory computing and neural network
architectures.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Geometric and Topological Inference for Deep Representations of Complex
Networks [13.173307471333619]
We present a class of statistics that emphasize the topology as well as the geometry of representations.
We evaluate these statistics in terms of the sensitivity and specificity that they afford when used for model selection.
These new methods enable brain and computer scientists to visualize the dynamic representational transformations learned by brains and models.
arXiv Detail & Related papers (2022-03-10T17:14:14Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Tensor networks for unsupervised machine learning [9.897828174118974]
We present the Autoregressive Matrix Product States (AMPS), a tensor-network-based model combining the matrix product states from quantum many-body physics and the autoregressive models from machine learning.
We show that the proposed model significantly outperforms the existing tensor-network-based models and the restricted Boltzmann machines.
arXiv Detail & Related papers (2021-06-24T12:51:00Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Learning Queuing Networks by Recurrent Neural Networks [0.0]
We propose a machine-learning approach to derive performance models from data.
We exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations.
This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model.
arXiv Detail & Related papers (2020-02-25T10:56:47Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
We develop a model that retains the intrinsic multidimensional structure of the dataset.
To estimate the model parameters, an Alternating Least Squares algorithm is developed.
The proposed model is able to outperform benchmark models present in the forecasting literature.
arXiv Detail & Related papers (2020-02-11T11:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.