Segment-based fusion of multi-sensor multi-scale satellite soil moisture
retrievals
- URL: http://arxiv.org/abs/2211.15938v1
- Date: Tue, 29 Nov 2022 05:23:33 GMT
- Title: Segment-based fusion of multi-sensor multi-scale satellite soil moisture
retrievals
- Authors: Reza Attarzadeh, Hossein Bagheri, Iman Khosravi, Saeid Niazmardi,
Davood Akbarid
- Abstract summary: This paper proposes a segment-based image fusion framework to evaluate the possibility of preparing a multi-scale soil moisture map.
The proposed methodology was able to improve soil moisture estimation in different scales up to 20% better compared to pixel-based fusion approach.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synergetic use of sensors for soil moisture retrieval is attracting
considerable interest due to the different advantages of different sensors.
Active, passive, and optic data integration could be a comprehensive solution
for exploiting the advantages of different sensors aimed at preparing soil
moisture maps. Typically, pixel-based methods are used for multi-sensor fusion.
Since, different applications need different scales of soil moisture maps,
pixel-based approaches are limited for this purpose. Object-based image
analysis employing an image object instead of a pixel could help us to meet
this need. This paper proposes a segment-based image fusion framework to
evaluate the possibility of preparing a multi-scale soil moisture map through
integrated Sentinel-1, Sentinel-2, and Soil Moisture Active Passive (SMAP)
data. The results confirmed that the proposed methodology was able to improve
soil moisture estimation in different scales up to 20% better compared to
pixel-based fusion approach.
Related papers
- Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - Bridging Remote Sensors with Multisensor Geospatial Foundation Models [15.289711240431107]
msGFM is a multisensor geospatial foundation model that unifies data from four key sensor modalities.
For data originating from identical geolocations, our model employs an innovative cross-sensor pretraining approach.
msGFM has demonstrated enhanced proficiency in a range of both single-sensor and multisensor downstream tasks.
arXiv Detail & Related papers (2024-04-01T17:30:56Z) - LCPR: A Multi-Scale Attention-Based LiDAR-Camera Fusion Network for
Place Recognition [11.206532393178385]
We present a novel neural network named LCPR for robust multimodal place recognition.
Our method can effectively utilize multi-view camera and LiDAR data to improve the place recognition performance.
arXiv Detail & Related papers (2023-11-06T15:39:48Z) - Log-Likelihood Score Level Fusion for Improved Cross-Sensor Smartphone
Periocular Recognition [52.15994166413364]
We employ fusion of several comparators to improve periocular performance when images from different smartphones are compared.
We use a probabilistic fusion framework based on linear logistic regression, in which fused scores tend to be log-likelihood ratios.
Our framework also provides an elegant and simple solution to handle signals from different devices, since same-sensor and cross-sensor score distributions are aligned and mapped to a common probabilistic domain.
arXiv Detail & Related papers (2023-11-02T13:43:44Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
This paper proposes a probabilistic deep metric learning framework for hyperspectral image classification.
It aims to predict the category of each pixel for an image captured by hyperspectral sensors.
Our framework can be readily applied to existing hyperspectral image classification methods.
arXiv Detail & Related papers (2022-11-15T17:57:12Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Decoupled-and-Coupled Networks: Self-Supervised Hyperspectral Image
Super-Resolution with Subpixel Fusion [67.35540259040806]
We propose a subpixel-level HS super-resolution framework by devising a novel decoupled-and-coupled network, called DCNet.
As the name suggests, DC-Net first decouples the input into common (or cross-sensor) and sensor-specific components.
We append a self-supervised learning module behind the CSU net by guaranteeing the material consistency to enhance the detailed appearances of the restored HS product.
arXiv Detail & Related papers (2022-05-07T23:40:36Z) - Learning a Sensor-invariant Embedding of Satellite Data: A Case Study
for Lake Ice Monitoring [19.72060218456938]
We learn a joint, sensor-invariant embedding within a deep neural network.
Our application problem is the monitoring of lake ice on Alpine lakes.
By fusing satellite data, we map lake ice at a temporal resolution of 1.5 days.
arXiv Detail & Related papers (2021-07-19T18:11:55Z) - Learning Selective Sensor Fusion for States Estimation [47.76590539558037]
We propose SelectFusion, an end-to-end selective sensor fusion module.
During prediction, the network is able to assess the reliability of the latent features from different sensor modalities.
We extensively evaluate all fusion strategies in both public datasets and on progressively degraded datasets.
arXiv Detail & Related papers (2019-12-30T20:25:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.