Robust Depth Enhancement via Polarization Prompt Fusion Tuning
- URL: http://arxiv.org/abs/2404.04318v1
- Date: Fri, 5 Apr 2024 17:55:33 GMT
- Title: Robust Depth Enhancement via Polarization Prompt Fusion Tuning
- Authors: Kei Ikemura, Yiming Huang, Felix Heide, Zhaoxiang Zhang, Qifeng Chen, Chenyang Lei,
- Abstract summary: We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
- Score: 112.88371907047396
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing depth sensors are imperfect and may provide inaccurate depth values in challenging scenarios, such as in the presence of transparent or reflective objects. In this work, we present a general framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors. Previous polarization-based depth enhancement methods focus on utilizing pure physics-based formulas for a single sensor. In contrast, our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors. To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets, as the size of the polarization dataset is limited to train a strong model from scratch. We conducted extensive experiments on a public dataset, and the results demonstrate that the proposed method performs favorably compared to existing depth enhancement baselines. Code and demos are available at https://lastbasket.github.io/PPFT/.
Related papers
- DELTAR: Depth Estimation from a Light-weight ToF Sensor and RGB Image [39.389538555506256]
We propose DELTAR, a novel method to empower light-weight ToF sensors with the capability of measuring high resolution and accurate depth.
As the core of DELTAR, a feature extractor customized for depth distribution and an attention-based neural architecture is proposed to fuse the information from the color and ToF domain efficiently.
Experiments show that our method produces more accurate depth than existing frameworks designed for depth completion and depth super-resolution and achieves on par performance with a commodity-level RGB-D sensor.
arXiv Detail & Related papers (2022-09-27T13:11:37Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - Consistent Depth Prediction under Various Illuminations using Dilated
Cross Attention [1.332560004325655]
We propose to use internet 3D indoor scenes and manually tune their illuminations to render photo-realistic RGB photos and their corresponding depth and BRDF maps.
We perform cross attention on these dilated features to retain the consistency of depth prediction under different illuminations.
Our method is evaluated by comparing it with current state-of-the-art methods on Vari dataset and a significant improvement is observed in experiments.
arXiv Detail & Related papers (2021-12-15T10:02:46Z) - Sparse Auxiliary Networks for Unified Monocular Depth Prediction and
Completion [56.85837052421469]
Estimating scene geometry from data obtained with cost-effective sensors is key for robots and self-driving cars.
In this paper, we study the problem of predicting dense depth from a single RGB image with optional sparse measurements from low-cost active depth sensors.
We introduce Sparse Networks (SANs), a new module enabling monodepth networks to perform both the tasks of depth prediction and completion.
arXiv Detail & Related papers (2021-03-30T21:22:26Z) - Adaptive Illumination based Depth Sensing using Deep Learning [18.72398843488572]
Various techniques have been proposed to estimate a dense depth map based on fusion of the sparse depth map measurement with the RGB image.
Recent advances in hardware enable adaptive depth measurements resulting in further improvement of the dense depth map estimation.
We show that such adaptive sampling masks can generalize well to many RGB and sparse depth fusion algorithms under a variety of sampling rates.
arXiv Detail & Related papers (2021-03-23T04:21:07Z) - ADAADepth: Adapting Data Augmentation and Attention for Self-Supervised
Monocular Depth Estimation [8.827921242078881]
We propose ADAA, utilising depth augmentation as depth supervision for learning accurate and robust depth.
We propose a relational self-attention module that learns rich contextual features and further enhances depth results.
We evaluate our predicted depth on the KITTI driving dataset and achieve state-of-the-art results.
arXiv Detail & Related papers (2021-03-01T09:06:55Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z) - Depth Completion via Inductive Fusion of Planar LIDAR and Monocular
Camera [27.978780155504467]
We introduce an inductive late-fusion block which better fuses different sensor modalities inspired by a probability model.
This block uses the dense context features to guide the depth prediction based on demonstrations by sparse depth features.
Our method shows promising results compared to previous approaches on both the benchmark datasets and simulated dataset.
arXiv Detail & Related papers (2020-09-03T18:39:57Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
Estimating depth from a single RGB image is a fundamental task in computer vision.
In this work, we rely, instead of different views, on depth from focus cues.
We present results that are on par with supervised methods on KITTI and Make3D datasets and outperform unsupervised learning approaches.
arXiv Detail & Related papers (2020-01-14T20:22:54Z) - Video Depth Estimation by Fusing Flow-to-Depth Proposals [65.24533384679657]
We present an approach with a differentiable flow-to-depth layer for video depth estimation.
The model consists of a flow-to-depth layer, a camera pose refinement module, and a depth fusion network.
Our approach outperforms state-of-the-art depth estimation methods, and has reasonable cross dataset generalization capability.
arXiv Detail & Related papers (2019-12-30T10:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.