Analyzing Infrastructure LiDAR Placement with Realistic LiDAR Simulation Library
- URL: http://arxiv.org/abs/2211.15975v4
- Date: Tue, 14 Jan 2025 03:55:17 GMT
- Title: Analyzing Infrastructure LiDAR Placement with Realistic LiDAR Simulation Library
- Authors: Xinyu Cai, Wentao Jiang, Runsheng Xu, Wenquan Zhao, Jiaqi Ma, Si Liu, Yikang Li,
- Abstract summary: Infrastructure sensors play a critical role in Vehicle-to-Everything(V2X) cooperative perception.<n>How to find the optimal placement of infrastructure sensors is rarely studied.<n>We propose a pipeline that can efficiently and effectively find optimal installation positions for infrastructure sensors in a realistic simulated environment.
- Score: 22.077414016647516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Vehicle-to-Everything(V2X) cooperative perception has attracted increasing attention. Infrastructure sensors play a critical role in this research field; however, how to find the optimal placement of infrastructure sensors is rarely studied. In this paper, we investigate the problem of infrastructure sensor placement and propose a pipeline that can efficiently and effectively find optimal installation positions for infrastructure sensors in a realistic simulated environment. To better simulate and evaluate LiDAR placement, we establish a Realistic LiDAR Simulation library that can simulate the unique characteristics of different popular LiDARs and produce high-fidelity LiDAR point clouds in the CARLA simulator. Through simulating point cloud data in different LiDAR placements, we can evaluate the perception accuracy of these placements using multiple detection models. Then, we analyze the correlation between the point cloud distribution and perception accuracy by calculating the density and uniformity of regions of interest. Experiments show that when using the same number and type of LiDAR, the placement scheme optimized by our proposed method improves the average precision by 15%, compared with the conventional placement scheme in the standard lane scene. We also analyze the correlation between perception performance in the region of interest and LiDAR point cloud distribution and validate that density and uniformity can be indicators of performance. Both the RLS Library and related code will be released at https://github.com/PJLab-ADG/PCSim.
Related papers
- Diffusion Based Robust LiDAR Place Recognition [7.703398598907747]
Mobile robots on construction sites require accurate pose estimation to perform autonomous surveying and inspection missions.
In this paper, we focus on the global re-positioning of a robot with respect to an accurate scanned mesh of the building solely using LiDAR data.
We train a diffusion model with a PointNet++ backbone, which allows us to model multiple position candidates from a single LiDAR point cloud.
The resulting model can successfully predict the global position of LiDAR in confined and complex sites despite the adverse effects of perceptual aliasing.
arXiv Detail & Related papers (2025-04-16T18:23:17Z) - LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - V2I-Calib: A Novel Calibration Approach for Collaborative Vehicle and Infrastructure LiDAR Systems [19.919120489121987]
This paper introduces a novel approach to V2I calibration, leveraging spatial association information among perceived objects.
Central to this method is the innovative Overall Intersection over Union (oIoU) metric, which quantifies the correlation between targets identified by vehicle and infrastructure systems.
Our approach involves identifying common targets within the perception results of vehicle and infrastructure LiDAR systems through the construction of an affinity matrix.
arXiv Detail & Related papers (2024-07-14T13:34:00Z) - Closing the loop: Autonomous experiments enabled by
machine-learning-based online data analysis in synchrotron beamline
environments [80.49514665620008]
Machine learning can be used to enhance research involving large or rapidly generated datasets.
In this study, we describe the incorporation of ML into a closed-loop workflow for X-ray reflectometry (XRR)
We present solutions that provide an elementary data analysis in real time during the experiment without introducing the additional software dependencies in the beamline control software environment.
arXiv Detail & Related papers (2023-06-20T21:21:19Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
This paper introduces a multimodal dataset from the harsh and unstructured underground environment with aerosol particles.
It contains synchronized raw data measurements from all onboard sensors in Robot Operating System (ROS) format.
The focus of this paper is not only to capture both temporal and spatial data diversities but also to present the impact of harsh conditions on captured data.
arXiv Detail & Related papers (2023-04-27T20:21:18Z) - PCGen: Point Cloud Generator for LiDAR Simulation [10.692184635629792]
Existing methods generate data which are more noisy and complete than the real point clouds.
We propose FPA raycasting and surrogate model raydrop.
With minimal training data, the surrogate model can generalize to different geographies and scenes.
Results show that object detection models trained by simulation data can achieve similar result as the real data trained model.
arXiv Detail & Related papers (2022-10-17T04:13:21Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - A Realism Metric for Generated LiDAR Point Clouds [2.6205925938720833]
This paper presents a novel metric to quantify the realism of LiDAR point clouds.
Relevant features are learned from real-world and synthetic point clouds by training on a proxy classification task.
In a series of experiments, we demonstrate the application of our metric to determine the realism of generated LiDAR data and compare the realism estimation of our metric to the performance of a segmentation model.
arXiv Detail & Related papers (2022-08-31T16:37:57Z) - Learning Moving-Object Tracking with FMCW LiDAR [53.05551269151209]
We propose a learning-based moving-object tracking method utilizing our newly developed LiDAR sensor, Frequency Modulated Continuous Wave (FMCW) LiDAR.
Given the labels, we propose a contrastive learning framework, which pulls together the features from the same instance in embedding space and pushes apart the features from different instances to improve the tracking quality.
arXiv Detail & Related papers (2022-03-02T09:11:36Z) - Robust Self-Supervised LiDAR Odometry via Representative Structure
Discovery and 3D Inherent Error Modeling [67.75095378830694]
We develop a two-stage odometry estimation network, where we obtain the ego-motion by estimating a set of sub-region transformations.
In this paper, we aim to alleviate the influence of unreliable structures in training, inference and mapping phases.
Our two-frame odometry outperforms the previous state of the arts by 16%/12% in terms of translational/rotational errors.
arXiv Detail & Related papers (2022-02-27T12:52:27Z) - End-To-End Optimization of LiDAR Beam Configuration for 3D Object
Detection and Localization [87.56144220508587]
We take a new route to learn to optimize the LiDAR beam configuration for a given application.
We propose a reinforcement learning-based learning-to-optimize framework to automatically optimize the beam configuration.
Our method is especially useful when a low-resolution (low-cost) LiDAR is needed.
arXiv Detail & Related papers (2022-01-11T09:46:31Z) - Improving Perception via Sensor Placement: Designing Multi-LiDAR Systems
for Autonomous Vehicles [16.45799795374353]
We propose an easy-to-compute information-theoretic surrogate cost metric based on Probabilistic Occupancy Grids (POG) to optimize LiDAR placement for maximal sensing.
Our results confirm that sensor placement is an important factor in 3D point cloud-based object detection and could lead to a variation of performance by 10% 20% on the state-of-the-art perception algorithms.
arXiv Detail & Related papers (2021-05-02T01:52:18Z) - ePointDA: An End-to-End Simulation-to-Real Domain Adaptation Framework
for LiDAR Point Cloud Segmentation [111.56730703473411]
Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations.
Simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels.
ePointDA consists of three modules: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning.
arXiv Detail & Related papers (2020-09-07T23:46:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.