LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting
- URL: http://arxiv.org/abs/2410.05111v1
- Date: Mon, 7 Oct 2024 15:07:56 GMT
- Title: LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting
- Authors: Qifeng Chen, Sheng Yang, Sicong Du, Tao Tang, Peng Chen, Yuchi Huo,
- Abstract summary: LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
- Score: 50.808933338389686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving. Although recent advancements, such as the use of reconstructed mesh and Neural Radiance Fields (NeRF), have made progress in simulating the physical properties of LiDAR, these methods have struggled to achieve satisfactory frame rates and rendering quality. To address these limitations, we present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes. The vanilla Gaussian Splatting, designed for camera models, cannot be directly applied to LiDAR re-simulation. To bridge the gap between passive camera and active LiDAR, our LiDAR-GS designs a differentiable laser beam splatting, grounded in the LiDAR range view model. This innovation allows for precise surface splatting by projecting lasers onto micro cross-sections, effectively eliminating artifacts associated with local affine approximations. Additionally, LiDAR-GS leverages Neural Gaussian Fields, which further integrate view-dependent clues, to represent key LiDAR properties that are influenced by the incident angle and external factors. Combining these practices with some essential adaptations, e.g., dynamic instances decomposition, our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets. Our source code will be made publicly available.
Related papers
- Multi-Modal Data-Efficient 3D Scene Understanding for Autonomous Driving [58.16024314532443]
We introduce LaserMix++, a framework that integrates laser beam manipulations from disparate LiDAR scans and incorporates LiDAR-camera correspondences to assist data-efficient learning.
Results demonstrate that LaserMix++ outperforms fully supervised alternatives, achieving comparable accuracy with five times fewer annotations.
This substantial advancement underscores the potential of semi-supervised approaches in reducing the reliance on extensive labeled data in LiDAR-based 3D scene understanding systems.
arXiv Detail & Related papers (2024-05-08T17:59:53Z) - Traj-LO: In Defense of LiDAR-Only Odometry Using an Effective
Continuous-Time Trajectory [20.452961476175812]
This letter explores the capability of LiDAR-only odometry through a continuous-time perspective.
Our proposed Traj-LO approach tries to recover the spatial-temporal consistent movement of LiDAR.
Our implementation is open-sourced on GitHub.
arXiv Detail & Related papers (2023-09-25T03:05:06Z) - Neural LiDAR Fields for Novel View Synthesis [80.45307792404685]
We present Neural Fields for LiDAR (NFL), a method to optimise a neural field scene representation from LiDAR measurements.
NFL combines the rendering power of neural fields with a detailed, physically motivated model of the LiDAR sensing process.
We show that the improved realism of the synthesized views narrows the domain gap to real scans and translates to better registration and semantic segmentation performance.
arXiv Detail & Related papers (2023-05-02T17:55:38Z) - NeRF-LiDAR: Generating Realistic LiDAR Point Clouds with Neural Radiance
Fields [20.887421720818892]
We present NeRF-LIDAR, a novel LiDAR simulation method that leverages real-world information to generate realistic LIDAR point clouds.
We verify the effectiveness of our NeRF-LiDAR by training different 3D segmentation models on the generated LiDAR point clouds.
arXiv Detail & Related papers (2023-04-28T12:41:28Z) - LiDAR-NeRF: Novel LiDAR View Synthesis via Neural Radiance Fields [112.62936571539232]
We introduce a new task, novel view synthesis for LiDAR sensors.
Traditional model-based LiDAR simulators with style-transfer neural networks can be applied to render novel views.
We use a neural radiance field (NeRF) to facilitate the joint learning of geometry and the attributes of 3D points.
arXiv Detail & Related papers (2023-04-20T15:44:37Z) - Generative Range Imaging for Learning Scene Priors of 3D LiDAR Data [3.9447103367861542]
This paper proposes a generative model of LiDAR range images applicable to the data-level domain transfer.
Motivated by the fact that LiDAR measurement is based on point-by-point range imaging, we train an implicit image representation-based generative adversarial networks.
We demonstrate the fidelity and diversity of our model in comparison with the point-based and image-based state-of-the-art generative models.
arXiv Detail & Related papers (2022-10-21T06:08:39Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
We introduce a pipeline for data-driven simulation of a realistic LiDAR sensor.
We show that our model can learn to encode realistic effects such as dropped points on transparent surfaces.
We use our technique to learn models of two distinct LiDAR sensors and use them to improve simulated LiDAR data accordingly.
arXiv Detail & Related papers (2022-09-22T13:12:54Z) - LiDARCap: Long-range Marker-less 3D Human Motion Capture with LiDAR
Point Clouds [58.402752909624716]
Existing motion capture datasets are largely short-range and cannot yet fit the need of long-range applications.
We propose LiDARHuman26M, a new human motion capture dataset captured by LiDAR at a much longer range to overcome this limitation.
Our dataset also includes the ground truth human motions acquired by the IMU system and the synchronous RGB images.
arXiv Detail & Related papers (2022-03-28T12:52:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.