Text Representation Enrichment Utilizing Graph based Approaches: Stock
Market Technical Analysis Case Study
- URL: http://arxiv.org/abs/2211.16103v1
- Date: Tue, 29 Nov 2022 11:26:08 GMT
- Title: Text Representation Enrichment Utilizing Graph based Approaches: Stock
Market Technical Analysis Case Study
- Authors: Sara Salamat, Nima Tavassoli, Behnam Sabeti, Reza Fahmi
- Abstract summary: We propose a transductive hybrid approach composed of an unsupervised node representation learning model followed by a node classification/edge prediction model.
The proposed model is developed to classify stock market technical analysis reports, which to our knowledge is the first work in this domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have been utilized for various natural language
processing (NLP) tasks lately. The ability to encode corpus-wide features in
graph representation made GNN models popular in various tasks such as document
classification. One major shortcoming of such models is that they mainly work
on homogeneous graphs, while representing text datasets as graphs requires
several node types which leads to a heterogeneous schema. In this paper, we
propose a transductive hybrid approach composed of an unsupervised node
representation learning model followed by a node classification/edge prediction
model. The proposed model is capable of processing heterogeneous graphs to
produce unified node embeddings which are then utilized for node classification
or link prediction as the downstream task. The proposed model is developed to
classify stock market technical analysis reports, which to our knowledge is the
first work in this domain. Experiments, which are carried away using a
constructed dataset, demonstrate the ability of the model in embedding
extraction and the downstream tasks.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Towards Graph Foundation Models: Learning Generalities Across Graphs via Task-Trees [50.78679002846741]
We introduce a novel approach for learning cross-task generalities in graphs.
We propose task-trees as basic learning instances to align task spaces on graphs.
Our findings indicate that when a graph neural network is pretrained on diverse task-trees, it acquires transferable knowledge.
arXiv Detail & Related papers (2024-12-21T02:07:43Z) - Bootstrapping Heterogeneous Graph Representation Learning via Large Language Models: A Generalized Approach [19.83520243242148]
Graph representation learning methods are highly effective in handling complex non-Euclidean data by capturing intricate relationships and features within graph structures.
Existing Heterogeneous Graph Neural Networks (HGNNs) have shown promising results but require prior knowledge of node and edge types and unified node feature formats.
Recent advancements in graph representation learning using Large Language Models (LLMs) offer new solutions.
arXiv Detail & Related papers (2024-12-11T02:37:32Z) - Graph Neural Networks on Discriminative Graphs of Words [19.817473565906777]
In this work, we explore a new Discriminative Graph of Words Graph Neural Network (DGoW-GNN) approach to classify text.
We propose a new model for the graph-based classification of text, which combines a GNN and a sequence model.
We evaluate our approach on seven benchmark datasets and find that it is outperformed by several state-of-the-art baseline models.
arXiv Detail & Related papers (2024-10-27T15:14:06Z) - Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - Deep Generative Models for Subgraph Prediction [10.56335881963895]
This paper introduces subgraph queries as a new task for deep graph learning.
Subgraph queries jointly predict the components of a target subgraph based on evidence that is represented by an observed subgraph.
We utilize a probabilistic deep Graph Generative Model to answer subgraph queries.
arXiv Detail & Related papers (2024-08-07T19:24:02Z) - You do not have to train Graph Neural Networks at all on text-attributed graphs [25.044734252779975]
We introduce TrainlessGNN, a linear GNN model capitalizing on the observation that text encodings from the same class often cluster together in a linear subspace.
Our experiments reveal that our trainless models can either match or even surpass their conventionally trained counterparts.
arXiv Detail & Related papers (2024-04-17T02:52:11Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - CopulaGNN: Towards Integrating Representational and Correlational Roles
of Graphs in Graph Neural Networks [23.115288017590093]
We investigate how Graph Neural Network (GNN) models can effectively leverage both types of information.
The proposed Copula Graph Neural Network (CopulaGNN) can take a wide range of GNN models as base models.
arXiv Detail & Related papers (2020-10-05T15:20:04Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.