GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph
- URL: http://arxiv.org/abs/2105.02605v3
- Date: Mon, 9 Oct 2023 03:36:29 GMT
- Title: GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph
- Authors: Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay
Agrawal, Amit Singh, Guangzhong Sun, Xing Xie
- Abstract summary: We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
- Score: 53.70520466556453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The representation learning on textual graph is to generate low-dimensional
embeddings for the nodes based on the individual textual features and the
neighbourhood information. Recent breakthroughs on pretrained language models
and graph neural networks push forward the development of corresponding
techniques. The existing works mainly rely on the cascaded model architecture:
the textual features of nodes are independently encoded by language models at
first; the textual embeddings are aggregated by graph neural networks
afterwards. However, the above architecture is limited due to the independent
modeling of textual features. In this work, we propose GraphFormers, where
layerwise GNN components are nested alongside the transformer blocks of
language models. With the proposed architecture, the text encoding and the
graph aggregation are fused into an iterative workflow, {making} each node's
semantic accurately comprehended from the global perspective. In addition, a
{progressive} learning strategy is introduced, where the model is successively
trained on manipulated data and original data to reinforce its capability of
integrating information on graph. Extensive evaluations are conducted on three
large-scale benchmark datasets, where GraphFormers outperform the SOTA
baselines with comparable running efficiency.
Related papers
- Verbalized Graph Representation Learning: A Fully Interpretable Graph Model Based on Large Language Models Throughout the Entire Process [8.820909397907274]
We propose a verbalized graph representation learning (VGRL) method which is fully interpretable.
In contrast to traditional graph machine learning models, VGRL constrains this parameter space to be text description.
We conduct several studies to empirically evaluate the effectiveness of VGRL.
arXiv Detail & Related papers (2024-10-02T12:07:47Z) - Node Level Graph Autoencoder: Unified Pretraining for Textual Graph Learning [45.70767623846523]
We propose a novel unified unsupervised learning autoencoder framework, named Node Level Graph AutoEncoder (NodeGAE)
We employ language models as the backbone of the autoencoder, with pretraining on text reconstruction.
Our method maintains simplicity in the training process and demonstrates generalizability across diverse textual graphs and downstream tasks.
arXiv Detail & Related papers (2024-08-09T14:57:53Z) - Bridging Local Details and Global Context in Text-Attributed Graphs [62.522550655068336]
GraphBridge is a framework that bridges local and global perspectives by leveraging contextual textual information.
Our method achieves state-of-theart performance, while our graph-aware token reduction module significantly enhances efficiency and solves scalability issues.
arXiv Detail & Related papers (2024-06-18T13:35:25Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - UniGraph: Learning a Unified Cross-Domain Foundation Model for Text-Attributed Graphs [30.635472655668078]
Text-Attributed Graphs (TAGs) can generalize to unseen graphs and tasks across diverse domains.
We propose a novel cascaded architecture of Language Models (LMs) and Graph Neural Networks (GNNs) as backbone networks.
We demonstrate the model's effectiveness in self-supervised representation learning on unseen graphs, few-shot in-context transfer, and zero-shot transfer.
arXiv Detail & Related papers (2024-02-21T09:06:31Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
The paper presents a new paradigm for understanding and reasoning about graph data by integrating image encoding and multimodal technologies.
This approach enables the comprehension of graph data through an instruction-response format, utilizing GPT-4V's advanced capabilities.
The study evaluates this paradigm on various graph types, highlighting the model's strengths and weaknesses, particularly in Chinese OCR performance and complex reasoning tasks.
arXiv Detail & Related papers (2023-12-16T08:14:11Z) - Pretraining Language Models with Text-Attributed Heterogeneous Graphs [28.579509154284448]
We present a new pretraining framework for Language Models (LMs) that explicitly considers the topological and heterogeneous information in Text-Attributed Heterogeneous Graphs (TAHGs)
We propose a topology-aware pretraining task to predict nodes involved in the context graph by jointly optimizing an LM and an auxiliary heterogeneous graph neural network.
We conduct link prediction and node classification tasks on three datasets from various domains.
arXiv Detail & Related papers (2023-10-19T08:41:21Z) - ConGraT: Self-Supervised Contrastive Pretraining for Joint Graph and Text Embeddings [20.25180279903009]
We propose Contrastive Graph-Text pretraining (ConGraT) for jointly learning separate representations of texts and nodes in a text-attributed graph (TAG)
Our method trains a language model (LM) and a graph neural network (GNN) to align their representations in a common latent space using a batch-wise contrastive learning objective inspired by CLIP.
Experiments demonstrate that ConGraT outperforms baselines on various downstream tasks, including node and text category classification, link prediction, and language modeling.
arXiv Detail & Related papers (2023-05-23T17:53:30Z) - A Robust Stacking Framework for Training Deep Graph Models with
Multifaceted Node Features [61.92791503017341]
Graph Neural Networks (GNNs) with numerical node features and graph structure as inputs have demonstrated superior performance on various supervised learning tasks with graph data.
The best models for such data types in most standard supervised learning settings with IID (non-graph) data are not easily incorporated into a GNN.
Here we propose a robust stacking framework that fuses graph-aware propagation with arbitrary models intended for IID data.
arXiv Detail & Related papers (2022-06-16T22:46:33Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.