論文の概要: Machine learning emulation of a local-scale UK climate model
- arxiv url: http://arxiv.org/abs/2211.16116v1
- Date: Tue, 29 Nov 2022 11:44:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 18:02:00.141118
- Title: Machine learning emulation of a local-scale UK climate model
- Title(参考訳): ローカルスケールの英国気候モデルの機械学習エミュレーション
- Authors: Henry Addison, Elizabeth Kendon, Suman Ravuri, Laurence Aitchison,
Peter AG Watson
- Abstract要約: 我々は,高解像度降雨の現実的なサンプルを生成できる機械学習モデルを初めて示す。
自己学習型位置情報を低分解能の相対渦性, 量子および試料の時間平均に付加することにより, 高分解能シミュレーションとよく一致した。
- 参考スコア(独自算出の注目度): 22.374171443798037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Climate change is causing the intensification of rainfall extremes.
Precipitation projections with high spatial resolution are important for
society to prepare for these changes, e.g. to model flooding impacts.
Physics-based simulations for creating such projections are very
computationally expensive. This work demonstrates the effectiveness of
diffusion models, a form of deep generative models, for generating much more
cheaply realistic high resolution rainfall samples for the UK conditioned on
data from a low resolution simulation. We show for the first time a machine
learning model that is able to produce realistic samples of high-resolution
rainfall based on a physical model that resolves atmospheric convection, a key
process behind extreme rainfall. By adding self-learnt, location-specific
information to low resolution relative vorticity, quantiles and time-mean of
the samples match well their counterparts from the high-resolution simulation.
- Abstract(参考訳): 気候変動は降雨の激化を引き起こしている。
空間分解能の高い降水予測は、洪水の影響をモデル化するなど、これらの変化に備えることが社会にとって重要である。
このようなプロジェクションを作成するための物理ベースのシミュレーションは非常に計算コストが高い。
本研究は,低分解能シミュレーションデータに基づくイギリスにおいてより安価に高分解能の降雨サンプルを生成するための,深層生成モデルの一形態である拡散モデルの有効性を示す。
我々は,大雨の背後にある重要なプロセスである大気対流を解決する物理モデルに基づいて,高分解能降雨の現実的なサンプルを生成できる機械学習モデルが初めて示す。
自己学習型位置情報を低分解能の相対渦性, 量子および試料の時間平均に付加することにより, 高分解能シミュレーションとよく一致した。
関連論文リスト
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - Machine learning emulation of precipitation from km-scale regional climate simulations using a diffusion model [22.255982502297197]
高解像度の気候シミュレーションは、気候変動の影響を理解し、適応策を計画するのに有用である。
CPMGEMは,イングランドやウェールズの高分解能モデルからの降水シミュレーションをはるかに低コストでエミュレートするために,生成機械学習モデルの新たな応用である拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-07-19T09:42:20Z) - Generating High-Resolution Regional Precipitation Using Conditional
Diffusion Model [7.784934642915291]
本稿では,気候データ,特に地域規模での降水量について,より詳細な生成モデルを提案する。
複数のLR気候変数に条件付き拡散確率モデルを用いる。
以上の結果から,下降気候データにおける条件拡散モデルの有効性が示唆された。
論文 参考訳(メタデータ) (2023-12-12T09:39:52Z) - Precipitation Downscaling with Spatiotemporal Video Diffusion [19.004369237435437]
この研究は、最近のビデオ拡散モデルを拡張して、超解像を降水させる。
決定論的ダウンスケーラと時間条件付き拡散モデルを用いて雑音特性と高周波パターンを抽出する。
カリフォルニアとヒマラヤを用いたCRPS, MSE, 降水分布の把握, および定性的側面の解析により, データ駆動型降水ダウンスケーリングの新しい標準として本手法を確立した。
論文 参考訳(メタデータ) (2023-12-11T02:38:07Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
本稿では,連続的畳み込み再帰層間の新しい2次元クロスアテンション機構を特徴とするエンコーダデコーダモデルであるTRU-NETを提案する。
降雨のゼロ・スクイド・%極端事象パターンを捉えるために,条件付き連続損失関数を用いた。
実験の結果,短期降水予測ではDLモデルよりもRMSEとMAEのスコアが低いことがわかった。
論文 参考訳(メタデータ) (2020-08-20T17:27:59Z) - From Rain Generation to Rain Removal [67.71728610434698]
雨層を生成物としてパラメータ化した雨画像のためのベイズ生成モデルを構築した。
降雨画像の統計的分布を推定するために,変分推論の枠組みを用いる。
総合的な実験により,提案モデルが複雑な降雨分布を忠実に抽出できることが確認された。
論文 参考訳(メタデータ) (2020-08-08T18:56:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。