A Structure-guided Effective and Temporal-lag Connectivity Network for
Revealing Brain Disorder Mechanisms
- URL: http://arxiv.org/abs/2212.00555v1
- Date: Thu, 1 Dec 2022 15:02:22 GMT
- Title: A Structure-guided Effective and Temporal-lag Connectivity Network for
Revealing Brain Disorder Mechanisms
- Authors: Zhengwang Xia, Tao Zhou, Saqib Mamoon, Amani Alfakih, Jianfeng Lu
- Abstract summary: We propose an effective temporal-lag neural network (termedN) to infer causal relationships and the temporal-lag values between brain regions.
The evaluation results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrate the effectiveness of the proposed method.
- Score: 8.459311736323572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain network provides important insights for the diagnosis of many brain
disorders, and how to effectively model the brain structure has become one of
the core issues in the domain of brain imaging analysis. Recently, various
computational methods have been proposed to estimate the causal relationship
(i.e., effective connectivity) between brain regions. Compared with traditional
correlation-based methods, effective connectivity can provide the direction of
information flow, which may provide additional information for the diagnosis of
brain diseases. However, existing methods either ignore the fact that there is
a temporal-lag in the information transmission across brain regions, or simply
set the temporal-lag value between all brain regions to a fixed value. To
overcome these issues, we design an effective temporal-lag neural network
(termed ETLN) to simultaneously infer the causal relationships and the
temporal-lag values between brain regions, which can be trained in an
end-to-end manner. In addition, we also introduce three mechanisms to better
guide the modeling of brain networks. The evaluation results on the Alzheimer's
Disease Neuroimaging Initiative (ADNI) database demonstrate the effectiveness
of the proposed method.
Related papers
- D-CoRP: Differentiable Connectivity Refinement for Functional Brain Networks [4.675640373196467]
Existing models for brain networks typically focus on brain regions or overlook the complexity of brain connectivities.
We develop a differentiable module for refining brain connectivity.
Our experimental results show that the proposed method can significantly improve the performance of various baseline models.
arXiv Detail & Related papers (2024-05-28T23:49:52Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - Spatial-Temporal DAG Convolutional Networks for End-to-End Joint
Effective Connectivity Learning and Resting-State fMRI Classification [42.82118108887965]
Building comprehensive brain connectomes has proved to be fundamental importance in resting-state fMRI (rs-fMRI) analysis.
We model the brain network as a directed acyclic graph (DAG) to discover direct causal connections between brain regions.
We propose Spatial-Temporal DAG Convolutional Network (ST-DAGCN) to jointly infer effective connectivity and classify rs-fMRI time series.
arXiv Detail & Related papers (2023-12-16T04:31:51Z) - BrainNetDiff: Generative AI Empowers Brain Network Generation via
Multimodal Diffusion Model [7.894526238189559]
We introduce BrainNetDiff, which combines a multi-head Transformer encoder to extract relevant features from fMRI time series.
We validate applicability of this framework in the construction of brain network across healthy and neurologically impaired cohorts.
arXiv Detail & Related papers (2023-11-09T08:27:12Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - Brain Diffuser: An End-to-End Brain Image to Brain Network Pipeline [54.93591298333767]
Brain diffuser is a diffusion based end-to-end brain network generative model.
It exploits more structural connectivity features and disease-related information by analyzing disparities in structural brain networks across subjects.
For the case of Alzheimer's disease, the proposed model performs better than the results from existing toolkits on the Alzheimer's Disease Neuroimaging Initiative database.
arXiv Detail & Related papers (2023-03-11T14:04:58Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
Existing machine learning methods for fMRI-based brain decoding either suffer from low classification performance or poor explainability.
We propose a biologically inspired architecture, Spatial Temporal-pyramid Graph Convolutional Network (STpGCN), to capture the spatial-temporal graph representation of functional brain activities.
We conduct extensive experiments on fMRI data under 23 cognitive tasks from Human Connectome Project (HCP) S1200.
arXiv Detail & Related papers (2022-10-08T12:14:33Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Recurrent Brain Graph Mapper for Predicting Time-Dependent Brain Graph
Evaluation Trajectory [0.0]
Brain disorders can be detected by observing alterations in the brain's structural and functional connectivities.
Recent studies aimed to predict the evolution of brain connectivities over time by proposing machine learning models.
Here, we propose to use brain connectivities as a more efficient alternative for time-dependent brain disorder diagnosis.
arXiv Detail & Related papers (2021-10-06T09:25:55Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.