論文の概要: GMM-IL: Image Classification using Incrementally Learnt, Independent
Probabilistic Models for Small Sample Sizes
- arxiv url: http://arxiv.org/abs/2212.00572v1
- Date: Thu, 1 Dec 2022 15:19:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 16:22:27.479792
- Title: GMM-IL: Image Classification using Incrementally Learnt, Independent
Probabilistic Models for Small Sample Sizes
- Title(参考訳): gmm-il: インクリメンタル学習型独立確率モデルを用いた小標本サイズの画像分類
- Authors: Penny Johnston, Keiller Nogueira, Kevin Swingler
- Abstract要約: 本稿では,視覚的特徴学習と確率モデルを組み合わせた2段階アーキテクチャを提案する。
我々は、ソフトマックスヘッドを用いた等価ネットワークのベンチマークを上回り、サンプルサイズが12以下の場合の精度が向上し、3つの不均衡なクラスプロファイルに対する重み付きF1スコアが向上した。
- 参考スコア(独自算出の注目度): 0.4511923587827301
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Current deep learning classifiers, carry out supervised learning and store
class discriminatory information in a set of shared network weights. These
weights cannot be easily altered to incrementally learn additional classes,
since the classification weights all require retraining to prevent old class
information from being lost and also require the previous training data to be
present. We present a novel two stage architecture which couples visual feature
learning with probabilistic models to represent each class in the form of a
Gaussian Mixture Model. By using these independent class representations within
our classifier, we outperform a benchmark of an equivalent network with a
Softmax head, obtaining increased accuracy for sample sizes smaller than 12 and
increased weighted F1 score for 3 imbalanced class profiles in that sample
range. When learning new classes our classifier exhibits no catastrophic
forgetting issues and only requires the new classes' training images to be
present. This enables a database of growing classes over time which can be
visually indexed and reasoned over.
- Abstract(参考訳): 現在のディープラーニング分類器は、教師付き学習を行い、共有ネットワーク重みのセットにクラス識別情報を格納する。
これらの重み付けは、クラスの追加を段階的に学習するために容易に変更できない。なぜなら、分類重みは、すべて古いクラス情報が失われるのを防ぐために再トレーニングが必要であり、また、以前のトレーニングデータも必要である。
本稿では,視覚特徴学習と確率モデルを組み合わせてガウス混合モデルとして各クラスを表現する新しい2段階アーキテクチャを提案する。
これらの独立クラス表現を分類器内で使用することにより、サンプルサイズが12未満の場合の精度が向上し、サンプル範囲内の3つの不均衡クラスプロファイルに対する重み付きF1スコアが増加した。
新しいクラスを学ぶとき、分類器は壊滅的な問題を示さず、新しいクラスのトレーニングイメージを提示するだけです。
これにより、時間とともに成長するクラスのデータベースを視覚的にインデックスし、推論することができる。
関連論文リスト
- Image-free Classifier Injection for Zero-Shot Classification [72.66409483088995]
ゼロショット学習モデルは、訓練中に見られなかったクラスからのサンプルのイメージ分類において顕著な結果が得られる。
我々は,画像データを用いることなく,ゼロショット分類機能を備えた事前学習モデルの装備を目指す。
提案したイメージフリーインジェクション・ウィズ・セマンティックス (ICIS) でこれを実現する。
論文 参考訳(メタデータ) (2023-08-21T09:56:48Z) - RAHNet: Retrieval Augmented Hybrid Network for Long-tailed Graph
Classification [10.806893809269074]
本稿では,ロバストな特徴抽出器と非バイアスな分類器を共同で学習するRAHNet(Retrieval Augmented Hybrid Network)を提案する。
特徴抽出学習の段階において,各クラスにおけるクラス内多様性を直接強化する関係グラフを探索するグラフ検索モジュールを開発する。
また、分類表現を得るために、カテゴリー中心の教師付きコントラスト損失を革新的に最適化する。
論文 参考訳(メタデータ) (2023-08-04T14:06:44Z) - Generalization Bounds for Few-Shot Transfer Learning with Pretrained
Classifiers [26.844410679685424]
本研究では,新しいクラスに移動可能な分類の表現を基礎モデルで学習する能力について検討する。
クラス-機能-変数の崩壊の場合,新しいクラスで学習した特徴マップのわずかな誤差が小さいことを示す。
論文 参考訳(メタデータ) (2022-12-23T18:46:05Z) - Evidential Deep Learning for Class-Incremental Semantic Segmentation [15.563703446465823]
クラス増分学習(Class-Incremental Learning)は、以前トレーニングされたニューラルネットワークを新しいクラスに拡張することを目的とした機械学習の課題である。
本稿では、将来的な非相関クラスの特徴クラスタリングを回避しつつ、ラベルのないクラスをモデル化する方法の問題に対処する。
提案手法は,この問題をディリクレ分布の期待値と推定の不確実性に対応する未知のクラス(背景)確率で計算した,別のフォアグラウンドクラス確率に分解する。
論文 参考訳(メタデータ) (2022-12-06T10:13:30Z) - Adaptive Distribution Calibration for Few-Shot Learning with
Hierarchical Optimal Transport [78.9167477093745]
本稿では,新しいサンプルとベースクラス間の適応重み行列を学習し,新しい分布校正法を提案する。
標準ベンチマーク実験の結果,提案したプラグ・アンド・プレイモデルの方が競合する手法より優れていることが示された。
論文 参考訳(メタデータ) (2022-10-09T02:32:57Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
CIL(Class-incremental Learning)は、少数のクラス(ベースクラス)から始まる設定で広く研究されている。
我々は、多数のベースクラスで事前訓練された強力なモデルから始まるCILの実証済み実世界の設定について検討する。
提案手法は、解析されたCIL設定すべてに頑健で一般化されている。
論文 参考訳(メタデータ) (2022-04-07T17:58:07Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot Class-Incremental Learning(FSCIL)は、いくつかのデータポイントから新しい概念を継続的に学習できる機械学習アルゴリズムの設計を目指している。
難点は、新しいクラスからの限られたデータが、重大な過度な問題を引き起こすだけでなく、破滅的な忘れの問題も悪化させることにある。
我々は,適応のための分類器間のコンテキスト情報を伝達するグラフモデルを用いた連続進化型cif(cec)を提案する。
論文 参考訳(メタデータ) (2021-04-07T10:54:51Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
ディープワンクラス分類のための2段階フレームワークを提案する。
まず,一級データから自己教師付き表現を学習し,学習した表現に基づいて一級分類器を構築する。
実験では、視覚領域の1クラス分類ベンチマークで最先端の性能を示す。
論文 参考訳(メタデータ) (2020-11-04T23:33:41Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
そこで本研究では,より大規模で未観測のクラスに対して,期待する精度を推定するために,分類器の性能をどのように利用することができるかを検討する。
ニューラルネットワークに基づく頑健なアルゴリズム "CleaneX" を定式化し,任意のサイズのクラスに対して,そのような分類器の精度を推定する。
論文 参考訳(メタデータ) (2020-10-28T14:37:25Z) - Learning Adaptive Embedding Considering Incremental Class [55.21855842960139]
CIL(Class-Incremental Learning)は,未知のクラスを逐次生成するストリーミングデータを用いて,信頼性の高いモデルをトレーニングすることを目的としている。
従来のクローズドセット学習とは異なり、CILには2つの大きな課題がある。
新たなクラスが検出された後、以前のデータ全体を使用して再トレーニングすることなく、モデルを更新する必要がある。
論文 参考訳(メタデータ) (2020-08-31T04:11:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。