GMM-IL: Image Classification using Incrementally Learnt, Independent
Probabilistic Models for Small Sample Sizes
- URL: http://arxiv.org/abs/2212.00572v1
- Date: Thu, 1 Dec 2022 15:19:42 GMT
- Title: GMM-IL: Image Classification using Incrementally Learnt, Independent
Probabilistic Models for Small Sample Sizes
- Authors: Penny Johnston, Keiller Nogueira, Kevin Swingler
- Abstract summary: We present a novel two stage architecture which couples visual feature learning with probabilistic models to represent each class.
We outperform a benchmark of an equivalent network with a Softmax head, obtaining increased accuracy for sample sizes smaller than 12 and increased weighted F1 score for 3 imbalanced class profiles.
- Score: 0.4511923587827301
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Current deep learning classifiers, carry out supervised learning and store
class discriminatory information in a set of shared network weights. These
weights cannot be easily altered to incrementally learn additional classes,
since the classification weights all require retraining to prevent old class
information from being lost and also require the previous training data to be
present. We present a novel two stage architecture which couples visual feature
learning with probabilistic models to represent each class in the form of a
Gaussian Mixture Model. By using these independent class representations within
our classifier, we outperform a benchmark of an equivalent network with a
Softmax head, obtaining increased accuracy for sample sizes smaller than 12 and
increased weighted F1 score for 3 imbalanced class profiles in that sample
range. When learning new classes our classifier exhibits no catastrophic
forgetting issues and only requires the new classes' training images to be
present. This enables a database of growing classes over time which can be
visually indexed and reasoned over.
Related papers
- Image-free Classifier Injection for Zero-Shot Classification [72.66409483088995]
Zero-shot learning models achieve remarkable results on image classification for samples from classes that were not seen during training.
We aim to equip pre-trained models with zero-shot classification capabilities without the use of image data.
We achieve this with our proposed Image-free Injection with Semantics (ICIS)
arXiv Detail & Related papers (2023-08-21T09:56:48Z) - RAHNet: Retrieval Augmented Hybrid Network for Long-tailed Graph
Classification [10.806893809269074]
We propose a novel framework called Retrieval Augmented Hybrid Network (RAHNet) to jointly learn a robust feature extractor and an unbiased classifier.
In the feature extractor training stage, we develop a graph retrieval module to search for relevant graphs that directly enrich the intra-class diversity for the tail classes.
We also innovatively optimize a category-centered supervised contrastive loss to obtain discriminative representations.
arXiv Detail & Related papers (2023-08-04T14:06:44Z) - Generalization Bounds for Few-Shot Transfer Learning with Pretrained
Classifiers [26.844410679685424]
We study the ability of foundation models to learn representations for classification that are transferable to new, unseen classes.
We show that the few-shot error of the learned feature map on new classes is small in case of class-feature-variability collapse.
arXiv Detail & Related papers (2022-12-23T18:46:05Z) - Evidential Deep Learning for Class-Incremental Semantic Segmentation [15.563703446465823]
Class-Incremental Learning is a challenging problem in machine learning that aims to extend previously trained neural networks with new classes.
In this paper, we address the problem of how to model unlabeled classes while avoiding spurious feature clustering of future uncorrelated classes.
Our method factorizes the problem into a separate foreground class probability, calculated by the expected value of the Dirichlet distribution, and an unknown class (background) probability corresponding to the uncertainty of the estimate.
arXiv Detail & Related papers (2022-12-06T10:13:30Z) - Adaptive Distribution Calibration for Few-Shot Learning with
Hierarchical Optimal Transport [78.9167477093745]
We propose a novel distribution calibration method by learning the adaptive weight matrix between novel samples and base classes.
Experimental results on standard benchmarks demonstrate that our proposed plug-and-play model outperforms competing approaches.
arXiv Detail & Related papers (2022-10-09T02:32:57Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes)
We explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes.
Our proposed method is robust and generalizes to all analyzed CIL settings.
arXiv Detail & Related papers (2022-04-07T17:58:07Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Few-Shot Incremental Learning with Continually Evolved Classifiers [46.278573301326276]
Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points.
The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems.
We propose a Continually Evolved CIF ( CEC) that employs a graph model to propagate context information between classifiers for adaptation.
arXiv Detail & Related papers (2021-04-07T10:54:51Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
We study how a classifier's performance can be used to extrapolate its expected accuracy on a larger, unobserved set of classes.
We formulate a robust neural-network-based algorithm, "CleaneX", which learns to estimate the accuracy of such classifiers on arbitrarily large sets of classes.
arXiv Detail & Related papers (2020-10-28T14:37:25Z) - Learning Adaptive Embedding Considering Incremental Class [55.21855842960139]
Class-Incremental Learning (CIL) aims to train a reliable model with the streaming data, which emerges unknown classes sequentially.
Different from traditional closed set learning, CIL has two main challenges: 1) Novel class detection.
After the novel classes are detected, the model needs to be updated without re-training using entire previous data.
arXiv Detail & Related papers (2020-08-31T04:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.