論文の概要: Language models and brains align due to more than next-word prediction and word-level information
- arxiv url: http://arxiv.org/abs/2212.00596v2
- Date: Thu, 03 Oct 2024 11:42:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-05 03:34:15.822607
- Title: Language models and brains align due to more than next-word prediction and word-level information
- Title(参考訳): 単語予測と単語レベルの情報による言語モデルと脳の整合性
- Authors: Gabriele Merlin, Mariya Toneva,
- Abstract要約: 事前訓練された言語モデルは、言語を解釈する人々の脳記録を著しく予測することが示されている。
最近の研究は、次の単語の予測がこのアライメントに寄与する重要なメカニズムであることを示唆している。
脳記録との整合性の改善は,次の単語の予測や単語レベルの情報の改善が原因であることが示唆された。
- 参考スコア(独自算出の注目度): 4.652236080354487
- License:
- Abstract: Pretrained language models have been shown to significantly predict brain recordings of people comprehending language. Recent work suggests that the prediction of the next word is a key mechanism that contributes to this alignment. What is not yet understood is whether prediction of the next word is necessary for this observed alignment or simply sufficient, and whether there are other shared mechanisms or information that are similarly important. In this work, we take a step towards understanding the reasons for brain alignment via two simple perturbations in popular pretrained language models. These perturbations help us design contrasts that can control for different types of information. By contrasting the brain alignment of these differently perturbed models, we show that improvements in alignment with brain recordings are due to more than improvements in next-word prediction and word-level information.
- Abstract(参考訳): 事前訓練された言語モデルは、言語を解釈する人々の脳の記録を著しく予測することが示されている。
最近の研究は、次の単語の予測がこのアライメントに寄与する重要なメカニズムであることを示唆している。
まだ理解されていないのは、この観測されたアライメントに次の単語の予測が必要なのか、あるいは単に十分なのか、また、同様の重要な共有メカニズムや情報が存在するかどうかである。
本研究は、一般的な事前学習言語モデルにおける2つの単純な摂動を通して、脳のアライメントの理由を理解するための一歩を踏み出したものである。
これらの摂動は、異なる種類の情報を制御するコントラストを設計するのに役立ちます。
これらの異なる摂動モデルの脳のアライメントと対比することにより、脳の記録とのアライメントの改善は、次の単語の予測と単語レベルの情報の改善によるものであることを示す。
関連論文リスト
- Improving semantic understanding in speech language models via brain-tuning [19.732593005537606]
言語モデルは、人間の脳の自然言語に対する反応と驚くほど一致している。
現在のモデルは低レベルの音声機能に大きく依存しており、脳関連セマンティクスが欠如していることを示している。
我々は、fMRI記録による微調整により、脳関連バイアスを直接モデルに誘導することで、この制限に対処する。
論文 参考訳(メタデータ) (2024-10-11T20:06:21Z) - Causal Graph in Language Model Rediscovers Cortical Hierarchy in Human
Narrative Processing [0.0]
これまでの研究では、言語モデルの特徴がfMRI脳活動にマッピングできることが示されている。
これは、言語モデルにおける情報処理と人間の脳の間に共通点があるのだろうか?
言語モデルにおける情報フローパターンを推定するために,異なる層間の因果関係について検討した。
論文 参考訳(メタデータ) (2023-11-17T10:09:12Z) - Humans and language models diverge when predicting repeating text [52.03471802608112]
我々は,人間とLMのパフォーマンスが分岐するシナリオを提示する。
人間とGPT-2 LMの予測はテキストスパンの最初のプレゼンテーションで強く一致しているが、メモリが役割を担い始めると、その性能は急速にバラバラになる。
このシナリオが,LMを人間の行動に近づける上で,今後の作業に拍車をかけることを期待しています。
論文 参考訳(メタデータ) (2023-10-10T08:24:28Z) - Meta predictive learning model of languages in neural circuits [2.5690340428649328]
本稿では,予測符号化フレームワークにおける平均場学習モデルを提案する。
我々のモデルでは、ほとんどの接続は学習後に決定論的になる。
本モデルは,脳計算,次点予測,一般知能の関連性を調べるための出発点となる。
論文 参考訳(メタデータ) (2023-09-08T03:58:05Z) - Why can neural language models solve next-word prediction? A
mathematical perspective [53.807657273043446]
本研究では,英語文の実例をモデル化するための形式言語群について検討する。
我々の証明は、ニューラルネットワークモデルにおける埋め込み層と完全に接続されたコンポーネントの異なる役割を強調します。
論文 参考訳(メタデータ) (2023-06-20T10:41:23Z) - Retentive or Forgetful? Diving into the Knowledge Memorizing Mechanism
of Language Models [49.39276272693035]
大規模事前学習型言語モデルは、顕著な記憶能力を示している。
プレトレーニングのないバニラニューラルネットワークは、破滅的な忘れ物問題に悩まされていることが長年観察されてきた。
1)バニラ言語モデルは忘れがちである; 2)事前学習は暗黙の言語モデルにつながる; 3)知識の妥当性と多様化は記憶形成に大きな影響を及ぼす。
論文 参考訳(メタデータ) (2023-05-16T03:50:38Z) - Training language models for deeper understanding improves brain
alignment [5.678337324555035]
言語を深く理解するシステムの構築は、自然言語処理(NLP)の中心的な目標の1つである。
より深い物語理解のための学習言語モデルにより、より豊かな表現が可能となり、人間の脳活動との整合性が向上したことを示す。
論文 参考訳(メタデータ) (2022-12-21T10:15:19Z) - Joint processing of linguistic properties in brains and language models [14.997785690790032]
人間の脳と言語モデルによる言語情報の詳細な処理の対応について検討する。
特定の言語特性の除去は脳のアライメントを著しく低下させる。
これらの知見は、脳と言語モデルとの整合における特定の言語情報の役割の明確な証拠である。
論文 参考訳(メタデータ) (2022-12-15T19:13:42Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z) - Long-range and hierarchical language predictions in brains and
algorithms [82.81964713263483]
深層言語アルゴリズムは隣接した単語の予測に最適化されているが、人間の脳は長距離で階層的な予測を行うように調整されている。
本研究は、予測符号化理論を強化し、自然言語処理における長距離および階層的予測の重要な役割を示唆する。
論文 参考訳(メタデータ) (2021-11-28T20:26:07Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
我々は,「深層学習」手法で訓練された現代人工ニューラルネットワークが,人間の文処理の中心的な側面を模倣するかどうかを検討した。
ネットワークは、大きなコーパスで次の単語を予測するためにのみ訓練されたが、分析の結果、局所的および長距離の構文合意をうまく処理する特別なユニットが出現した。
我々は,複数の名詞の単数/複数状態における体系的な変化を伴う文中の数一致の違反を人間が検出する行動実験において,モデルの予測を検証した。
論文 参考訳(メタデータ) (2020-06-19T12:00:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。