論文の概要: Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2212.00678v1
- Date: Thu, 1 Dec 2022 17:31:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 14:45:46.849334
- Title: Adapted Multimodal BERT with Layer-wise Fusion for Sentiment Analysis
- Title(参考訳): 感情分析のための層間融合型マルチモーダルbertの適用
- Authors: Odysseas S. Chlapanis, Georgios Paraskevopoulos, Alexandros Potamianos
- Abstract要約: 本稿では,マルチモーダルタスクのためのBERTベースのアーキテクチャであるAdapted Multimodal BERTを提案する。
アダプタはタスクの事前訓練された言語モデルを手動で調整し、融合層はタスク固有の層ワイドな音声視覚情報とテキストBERT表現を融合させる。
われわれは、このアプローチがより効率的なモデルにつながり、微調整されたモデルよりも優れ、ノイズの入力に堅牢であることを示した。
- 参考スコア(独自算出の注目度): 84.12658971655253
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multimodal learning pipelines have benefited from the success of pretrained
language models. However, this comes at the cost of increased model parameters.
In this work, we propose Adapted Multimodal BERT (AMB), a BERT-based
architecture for multimodal tasks that uses a combination of adapter modules
and intermediate fusion layers. The adapter adjusts the pretrained language
model for the task at hand, while the fusion layers perform task-specific,
layer-wise fusion of audio-visual information with textual BERT
representations. During the adaptation process the pre-trained language model
parameters remain frozen, allowing for fast, parameter-efficient training. In
our ablations we see that this approach leads to efficient models, that can
outperform their fine-tuned counterparts and are robust to input noise. Our
experiments on sentiment analysis with CMU-MOSEI show that AMB outperforms the
current state-of-the-art across metrics, with 3.4% relative reduction in the
resulting error and 2.1% relative improvement in 7-class classification
accuracy.
- Abstract(参考訳): マルチモーダル学習パイプラインは、事前訓練された言語モデルの成功の恩恵を受けている。
しかし、これはモデルパラメータの増加のコストがかかっている。
本稿では,アダプタモジュールと中間融合層を組み合わせたマルチモーダルタスクのためのbertベースのアーキテクチャであるadapted multimodal bert (amb)を提案する。
アダプタはタスクの事前学習された言語モデルを調整し、融合層は音声視覚情報とテキストのbert表現をタスク固有の階層的に融合する。
適応プロセスの間、事前訓練された言語モデルパラメータは凍結し続け、高速でパラメータ効率のよいトレーニングを可能にした。
われわれは、このアプローチがより効率的なモデルにつながり、微調整されたモデルよりも優れ、ノイズの入力に堅牢であることを示した。
CMU-MOSEI を用いた感情分析実験により,AMB は,結果の誤差が3.4%減少し,7クラス分類精度が2.1%向上した。
関連論文リスト
- Mixture-of-Linguistic-Experts Adapters for Improving and Interpreting
Pre-trained Language Models [22.977852629450346]
本稿では,言語モデルに言語構造を注入することで,2つの人気のある研究領域を組み合わせる手法を提案する。
本研究では,異なる言語構造をコードする並列アダプタモジュールを,Mixture-of-Linguistic-Expertsアーキテクチャを用いて組み合わせる。
実験の結果,本手法はパラメータ数に比較して,最先端のPEFT法より優れていることがわかった。
論文 参考訳(メタデータ) (2023-10-24T23:29:06Z) - Mixture-of-Expert Conformer for Streaming Multilingual ASR [33.14594179710925]
本稿では,マルチランガル・コンバータによるマルチランガル・コンバータを提案する。
提案したMoE層は、専門家の数が増加するにつれて、一定の数のパラメータを活性化することで効率的な推論を提供する。
提案したモデルを12言語で評価し,ベースラインよりも平均11.9%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2023-05-25T02:16:32Z) - An Empirical Study of Multimodal Model Merging [148.48412442848795]
モデルマージは、異なるタスクでトレーニングされた複数のモデルを融合してマルチタスクソリューションを生成するテクニックである。
我々は、モダリティ固有のアーキテクチャのビジョン、言語、およびクロスモーダルトランスフォーマーをマージできる新しい目標に向けて研究を行っている。
本稿では,重み間の距離を推定し,マージ結果の指標となる2つの指標を提案する。
論文 参考訳(メタデータ) (2023-04-28T15:43:21Z) - Efficient Multimodal Fusion via Interactive Prompting [62.08292938484994]
大規模事前学習は、コンピュータビジョンや自然言語処理のような一助的な分野を新しい時代にもたらした。
本稿では,一様事前学習型変圧器の融合に適した効率的かつ柔軟な多モード融合法PMFを提案する。
論文 参考訳(メタデータ) (2023-04-13T07:31:51Z) - eP-ALM: Efficient Perceptual Augmentation of Language Models [70.47962271121389]
本稿では,既存モデルの適応性を向上するための直接的な取り組みを提案し,認識を伴う言語モデルの拡張を提案する。
視覚言語タスクに事前訓練されたモデルを適用するための既存のアプローチは、その効率を妨げているいくつかの重要なコンポーネントに依存している。
総パラメータの99%以上を凍結し,1つの直線射影層のみをトレーニングし,1つのトレーニング可能なトークンのみを予測することにより,我々のアプローチ(eP-ALM)は,VQAとCaptioningの他のベースラインよりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T19:20:34Z) - Prompt Tuning for Parameter-efficient Medical Image Segmentation [79.09285179181225]
2つの医用画像データセットのセマンティックセグメンテーションにパラメータ効率が良いが効果的な適応を実現するために,いくつかのコントリビューションを提案し,検討する。
我々はこのアーキテクチャを、オンライン生成プロトタイプへの割り当てに基づく専用密集型セルフスーパービジョンスキームで事前訓練する。
得られたニューラルネットワークモデルにより、完全に微調整されたモデルとパラメータに適応したモデルとのギャップを緩和できることを実証する。
論文 参考訳(メタデータ) (2022-11-16T21:55:05Z) - MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided
Adaptation [68.30497162547768]
本研究では,Mixture-of-Experts構造を用いてモデルキャパシティと推論速度を向上させるMoEBERTを提案する。
自然言語理解と質問応答タスクにおけるMoEBERTの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2022-04-15T23:19:37Z) - BERT-EMD: Many-to-Many Layer Mapping for BERT Compression with Earth
Mover's Distance [25.229624487344186]
高ストレージと計算コストは、事前訓練された言語モデルがリソース制約されたデバイスに効果的にデプロイされることを妨げる。
本稿では,多層多層膜マッピングに基づく新しいBERT蒸留法を提案する。
我々のモデルは様々なNLPタスクに対して異なる教師層から適応的に学習することができる。
論文 参考訳(メタデータ) (2020-10-13T02:53:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。