Geometry-Aware Network for Domain Adaptive Semantic Segmentation
- URL: http://arxiv.org/abs/2212.00920v2
- Date: Mon, 5 Dec 2022 12:04:18 GMT
- Title: Geometry-Aware Network for Domain Adaptive Semantic Segmentation
- Authors: Yinghong Liao, Wending Zhou, Xu Yan, Shuguang Cui, Yizhou Yu, Zhen Li
- Abstract summary: We propose a novel Geometry-Aware Network for Domain Adaptation (GANDA) to shrink the domain gaps.
We exploit 3D topology on the point clouds generated from RGB-D images for coordinate-color disentanglement and pseudo-labels refinement in the target domain.
Our model outperforms state-of-the-arts on GTA5->Cityscapes and SYNTHIA->Cityscapes.
- Score: 64.00345743710653
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Measuring and alleviating the discrepancies between the synthetic (source)
and real scene (target) data is the core issue for domain adaptive semantic
segmentation. Though recent works have introduced depth information in the
source domain to reinforce the geometric and semantic knowledge transfer, they
cannot extract the intrinsic 3D information of objects, including positions and
shapes, merely based on 2D estimated depth. In this work, we propose a novel
Geometry-Aware Network for Domain Adaptation (GANDA), leveraging more compact
3D geometric point cloud representations to shrink the domain gaps. In
particular, we first utilize the auxiliary depth supervision from the source
domain to obtain the depth prediction in the target domain to accomplish
structure-texture disentanglement. Beyond depth estimation, we explicitly
exploit 3D topology on the point clouds generated from RGB-D images for further
coordinate-color disentanglement and pseudo-labels refinement in the target
domain. Moreover, to improve the 2D classifier in the target domain, we perform
domain-invariant geometric adaptation from source to target and unify the 2D
semantic and 3D geometric segmentation results in two domains. Note that our
GANDA is plug-and-play in any existing UDA framework. Qualitative and
quantitative results demonstrate that our model outperforms state-of-the-arts
on GTA5->Cityscapes and SYNTHIA->Cityscapes.
Related papers
- Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - Syn-to-Real Unsupervised Domain Adaptation for Indoor 3D Object Detection [50.448520056844885]
We propose a novel framework for syn-to-real unsupervised domain adaptation in indoor 3D object detection.
Our adaptation results from synthetic dataset 3D-FRONT to real-world datasets ScanNetV2 and SUN RGB-D demonstrate remarkable mAP25 improvements of 9.7% and 9.1% over Source-Only baselines.
arXiv Detail & Related papers (2024-06-17T08:18:41Z) - Visual Foundation Models Boost Cross-Modal Unsupervised Domain Adaptation for 3D Semantic Segmentation [17.875516787157018]
We study how to harness the knowledge priors learned by 2D visual foundation models to produce more accurate labels for unlabeled target domains.
Our method is evaluated on various autonomous driving datasets and the results demonstrate a significant improvement for 3D segmentation task.
arXiv Detail & Related papers (2024-03-15T03:58:17Z) - Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
compositional semantic mixing represents the first unsupervised domain adaptation technique for point cloud segmentation.
We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world)
arXiv Detail & Related papers (2023-08-28T14:43:36Z) - Density-Insensitive Unsupervised Domain Adaption on 3D Object Detection [19.703181080679176]
3D object detection from point clouds is crucial in safety-critical autonomous driving.
We propose a density-insensitive domain adaption framework to address the density-induced domain gap.
Experimental results on three widely adopted 3D object detection datasets demonstrate that our proposed domain adaption method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2023-04-19T06:33:07Z) - CL3D: Unsupervised Domain Adaptation for Cross-LiDAR 3D Detection [16.021932740447966]
Domain adaptation for Cross-LiDAR 3D detection is challenging due to the large gap on the raw data representation.
We present an unsupervised domain adaptation method that overcomes above difficulties.
arXiv Detail & Related papers (2022-12-01T03:22:55Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Learning Geometry-Disentangled Representation for Complementary
Understanding of 3D Object Point Cloud [50.56461318879761]
We propose Geometry-Disentangled Attention Network (GDANet) for 3D image processing.
GDANet disentangles point clouds into contour and flat part of 3D objects, respectively denoted by sharp and gentle variation components.
Experiments on 3D object classification and segmentation benchmarks demonstrate that GDANet achieves the state-of-the-arts with fewer parameters.
arXiv Detail & Related papers (2020-12-20T13:35:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.